These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 17670893)
21. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Hsu S; Thakar R; Liepmann D; Li S Biochem Biophys Res Commun; 2005 Nov; 337(1):401-9. PubMed ID: 16188239 [TBL] [Abstract][Full Text] [Related]
22. Gene expression of endothelial cells under pulsatile non-reversing vs. steady shear stress; comparison of nitric oxide production. Yee A; Bosworth KA; Conway DE; Eskin SG; McIntire LV Ann Biomed Eng; 2008 Apr; 36(4):571-9. PubMed ID: 18256937 [TBL] [Abstract][Full Text] [Related]
23. Selective modulation of endothelial cell [Ca2+]i response to flow by the onset rate of shear stress. Blackman BR; Thibault LE; Barbee KA J Biomech Eng; 2000 Jun; 122(3):274-82. PubMed ID: 10923296 [TBL] [Abstract][Full Text] [Related]
24. Flow detection and calcium signalling in vascular endothelial cells. Ando J; Yamamoto K Cardiovasc Res; 2013 Jul; 99(2):260-8. PubMed ID: 23572234 [TBL] [Abstract][Full Text] [Related]
25. Shear-induced force transmission in a multicomponent, multicell model of the endothelium. Dabagh M; Jalali P; Butler PJ; Tarbell JM J R Soc Interface; 2014 Sep; 11(98):20140431. PubMed ID: 24966239 [TBL] [Abstract][Full Text] [Related]
26. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells. Meza D; Abejar L; Rubenstein DA; Yin W J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848 [TBL] [Abstract][Full Text] [Related]
27. Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration. Ai L; Rouhanizadeh M; Wu JC; Takabe W; Yu H; Alavi M; Li R; Chu Y; Miller J; Heistad DD; Hsiai TK Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1576-85. PubMed ID: 18434620 [TBL] [Abstract][Full Text] [Related]
28. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. Zhao P; Liu X; Zhang X; Wang L; Su H; Wang L; He N; Zhang D; Li Z; Kang H; Sun A; Chen Z; Zhou L; Wang M; Zhang Y; Deng X; Fan Y Lab Chip; 2021 Jan; 21(2):421-434. PubMed ID: 33351007 [TBL] [Abstract][Full Text] [Related]
29. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Choi HW; Barakat AI Biorheology; 2005; 42(6):493-509. PubMed ID: 16369086 [TBL] [Abstract][Full Text] [Related]
30. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Moore JE; Bürki E; Suciu A; Zhao S; Burnier M; Brunner HR; Meister JJ Ann Biomed Eng; 1994; 22(4):416-22. PubMed ID: 7998687 [TBL] [Abstract][Full Text] [Related]
31. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Cheng H; Zhong W; Wang L; Zhang Q; Ma X; Wang Y; Wang S; He C; Wei Q; Fu C Biomed Pharmacother; 2023 Feb; 158():114198. PubMed ID: 36916427 [TBL] [Abstract][Full Text] [Related]
32. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells. Avari H; Savory E; Rogers KA Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672 [TBL] [Abstract][Full Text] [Related]
34. The fate of an endothelium layer after preconditioning. Yazdani SK; Tillman BW; Berry JL; Soker S; Geary RL J Vasc Surg; 2010 Jan; 51(1):174-83. PubMed ID: 20117500 [TBL] [Abstract][Full Text] [Related]
35. Pulsatile and steady flow-induced calcium oscillations in single cultured endothelial cells. Helmlinger G; Berk BC; Nerem RM J Vasc Res; 1996; 33(5):360-9. PubMed ID: 8862141 [TBL] [Abstract][Full Text] [Related]
36. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow. Ni CW; Hsieh HJ; Chao YJ; Wang DL Am J Physiol Cell Physiol; 2004 Sep; 287(3):C771-80. PubMed ID: 15151905 [TBL] [Abstract][Full Text] [Related]
37. Role of shear stress direction in endothelial mechanotransduction. Chien S Mol Cell Biomech; 2008 Mar; 5(1):1-8. PubMed ID: 18524241 [TBL] [Abstract][Full Text] [Related]
38. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Colgan OC; Ferguson G; Collins NT; Murphy RP; Meade G; Cahill PA; Cummins PM Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3190-7. PubMed ID: 17308001 [TBL] [Abstract][Full Text] [Related]
39. Molecular basis of the effects of shear stress on vascular endothelial cells. Li YS; Haga JH; Chien S J Biomech; 2005 Oct; 38(10):1949-71. PubMed ID: 16084198 [TBL] [Abstract][Full Text] [Related]
40. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Barbee KA Ann Biomed Eng; 2002 Apr; 30(4):472-82. PubMed ID: 12085999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]