These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17670957)

  • 21. Age-Related Parameters of the Spinal Inhibition of Skeletal Muscles in the Regulation of Voluntary Movements in Males.
    Chelnokov AA; Gladchenko DA; Fedorov SA; Gorodnichev RM
    Fiziol Cheloveka; 2017 Jan; 43(1):35-44. PubMed ID: 29509361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human neuronal control of automatic functional movements: interaction between central programs and afferent input.
    Dietz V
    Physiol Rev; 1992 Jan; 72(1):33-69. PubMed ID: 1731372
    [No Abstract]   [Full Text] [Related]  

  • 24. Spinal cord functional MRI at 3 T: gradient echo echo-planar imaging versus turbo spin echo.
    Bouwman CJ; Wilmink JT; Mess WH; Backes WH
    Neuroimage; 2008 Nov; 43(2):288-96. PubMed ID: 18706507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What might the brain know about muscles, limbs and spinal circuits?
    Loeb GE
    Prog Brain Res; 1999; 123():405-9. PubMed ID: 10635735
    [No Abstract]   [Full Text] [Related]  

  • 26. Human Spinal Motor Control.
    Nielsen JB
    Annu Rev Neurosci; 2016 Jul; 39():81-101. PubMed ID: 27023730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Primary motor cortex as one of the levels of the construction of movements].
    Pavlova OG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(6):600-14. PubMed ID: 25975137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in transmission in the pathway of heteronymous spinal recurrent inhibition from soleus to quadriceps motor neurons during movement in man.
    Iles JF; Pardoe J
    Brain; 1999 Sep; 122 ( Pt 9)():1757-64. PubMed ID: 10468514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.
    Davey NJ; Romaiguère P; Maskill DW; Ellaway PH
    J Physiol; 1994 Jun; 477(Pt 2):223-35. PubMed ID: 7932215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Non-Invasive Methods for the Control of Human Spinal Locomotory Systems].
    Shcherbakova NA; Moshonkina TR; Savohin AA; Selinonov VA; Gorodnichev RM; Gerasimenko YP
    Fiziol Cheloveka; 2016; 42(1):73-81. PubMed ID: 27188149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials.
    Minassian K; Jilge B; Rattay F; Pinter MM; Binder H; Gerstenbrand F; Dimitrijevic MR
    Spinal Cord; 2004 Jul; 42(7):401-16. PubMed ID: 15124000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity.
    Maieron M; Iannetti GD; Bodurka J; Tracey I; Bandettini PA; Porro CA
    J Neurosci; 2007 Apr; 27(15):4182-90. PubMed ID: 17428996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor facilitation of the human cortico-spinal system during observation of bio-mechanically impossible movements.
    Romani M; Cesari P; Urgesi C; Facchini S; Aglioti SM
    Neuroimage; 2005 Jul; 26(3):755-63. PubMed ID: 15955484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey.
    Perlmutter SI; Maier MA; Fetz EE
    J Neurophysiol; 1998 Nov; 80(5):2475-94. PubMed ID: 9819257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limb movements generated by stimulating muscle, nerve and spinal cord.
    Stein RB; Aoyagi Y; Mushahwar VK; Prochazka A
    Arch Ital Biol; 2002 Oct; 140(4):273-81. PubMed ID: 12228980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional properties of primate spinal interneurones during voluntary hand movements.
    Fetz EE; Perlmutter SI; Prut Y; Seki K
    Adv Exp Med Biol; 2002; 508():265-71. PubMed ID: 12171121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation.
    Niyazov DM; Butler AJ; Kadah YM; Epstein CM; Hu XP
    Clin Neurophysiol; 2005 Jul; 116(7):1601-10. PubMed ID: 15953559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord.
    Adkins DL; Boychuk J; Remple MS; Kleim JA
    J Appl Physiol (1985); 2006 Dec; 101(6):1776-82. PubMed ID: 16959909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The processing of human ballistic movements explored by stimulation over the cortex.
    Palmer E; Cafarelli E; Ashby P
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):509-20. PubMed ID: 7738842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation conditions can improve the validity of the interpolated twitch technique.
    Duchateau J
    J Appl Physiol (1985); 2009 Jul; 107(1):361; discussion 367-8. PubMed ID: 19670474
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.