These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17670993)

  • 1. Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses.
    Heil P; Neubauer H; Irvine DR; Brown M
    J Neurosci; 2007 Aug; 27(31):8457-74. PubMed ID: 17670993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmitter release at the hair cell ribbon synapse.
    Glowatzki E; Fuchs PA
    Nat Neurosci; 2002 Feb; 5(2):147-54. PubMed ID: 11802170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory nerve fiber responses to combined acoustic and electric stimulation.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):425-45. PubMed ID: 19205803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse.
    Jing Z; Rutherford MA; Takago H; Frank T; Fejtova A; Khimich D; Moser T; Strenzke N
    J Neurosci; 2013 Mar; 33(10):4456-67. PubMed ID: 23467361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response properties of the refractory auditory nerve fiber.
    Miller CA; Abbas PJ; Robinson BK
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):216-32. PubMed ID: 11669395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic recordings at afferent dendrites contacting cochlear inner hair cells: monitoring multivesicular release at a ribbon synapse.
    Grant L; Yi E; Goutman JD; Glowatzki E
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21339728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response properties from turtle auditory hair cell afferent fibers suggest spike generation is driven by synchronized release both between and within synapses.
    Schnee ME; Castellano-Muñoz M; Ricci AJ
    J Neurophysiol; 2013 Jul; 110(1):204-20. PubMed ID: 23596330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse.
    Grant L; Yi E; Glowatzki E
    J Neurosci; 2010 Mar; 30(12):4210-20. PubMed ID: 20335456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres.
    Schoonhoven R; Prijs VF; Frijns JH
    Hear Res; 1997 Nov; 113(1-2):247-60. PubMed ID: 9388003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course and calcium dependence of transmitter release at a single ribbon synapse.
    Goutman JD; Glowatzki E
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16341-6. PubMed ID: 17911259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.