These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17671318)

  • 1. Measurement of propulsive power and evaluation of propulsive performance from the wake of a self-propelled vehicle.
    Krueger PS
    Bioinspir Biomim; 2006 Dec; 1(4):S49-56. PubMed ID: 17671318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number.
    Nichols JT; Krueger PS
    Bioinspir Biomim; 2012 Sep; 7(3):036010. PubMed ID: 22549087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle.
    Moslemi AA; Krueger PS
    Bioinspir Biomim; 2010 Sep; 5(3):036003. PubMed ID: 20710067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Reynolds number on the propulsive efficiency of a biomorphic pulsed-jet underwater vehicle.
    Moslemi AA; Krueger PS
    Bioinspir Biomim; 2011 Jun; 6(2):026001. PubMed ID: 21364256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of fish propulsion.
    Maertens AP; Triantafyllou MS; Yue DK
    Bioinspir Biomim; 2015 Jul; 10(4):046013. PubMed ID: 26226349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer.
    Bergmann M; Iollo A; Mittal R
    Bioinspir Biomim; 2014 Sep; 9(4):046001. PubMed ID: 25252883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-amplitude undulatory swimming near a wall.
    Fernández-Prats R; Raspa V; Thiria B; Huera-Huarte F; Godoy-Diana R
    Bioinspir Biomim; 2015 Jan; 10(1):016003. PubMed ID: 25561330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.
    Naemi R; Sanders RH
    J Biomech Eng; 2008 Dec; 130(6):061016. PubMed ID: 19045545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propulsive performance of a body with a traveling-wave surface.
    Tian FB; Lu XY; Luo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016304. PubMed ID: 23005522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renewable fluid dynamic energy derived from aquatic animal locomotion.
    Dabiri JO
    Bioinspir Biomim; 2007 Sep; 2(3):L1-3. PubMed ID: 17848785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propulsive force calculations in swimming frogs. II. Application of a vortex ring model to DPIV data.
    Stamhuis EJ; Nauwelaerts S
    J Exp Biol; 2005 Apr; 208(Pt 8):1445-51. PubMed ID: 15802668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.
    Peng J; Dabiri JO
    J Exp Biol; 2008 Aug; 211(Pt 16):2669-77. PubMed ID: 18689420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.
    Martins EF; Flesch CA; Flesch RC; Borges MR
    ISA Trans; 2011 Jul; 50(3):513-20. PubMed ID: 21334618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative jet wake structure and swimming performance of salps.
    Sutherland KR; Madin LP
    J Exp Biol; 2010 Sep; 213(Pt 17):2967-75. PubMed ID: 20709925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optimum finger spacing in human swimming.
    Minetti AE; Machtsiras G; Masters JC
    J Biomech; 2009 Sep; 42(13):2188-90. PubMed ID: 19651409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards optimizing rowing technique.
    Sanderson B; Martindale W
    Med Sci Sports Exerc; 1986 Aug; 18(4):454-68. PubMed ID: 3747808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
    Liu H; Taylor B; Curet OM
    Soft Robot; 2017 Jun; 4(2):103-116. PubMed ID: 29182095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurements of the kinematics and dynamics of bat flight.
    Tian X; Iriarte-Diaz J; Middleton K; Galvao R; Israeli E; Roemer A; Sullivan A; Song A; Swartz S; Breuer K
    Bioinspir Biomim; 2006 Dec; 1(4):S10-8. PubMed ID: 17671313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.