These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 17671894)

  • 1. Tumor-targeted induction of oxystress for cancer therapy.
    Fang J; Nakamura H; Iyer AK
    J Drug Target; 2007; 15(7-8):475-86. PubMed ID: 17671894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin.
    Fang J; Sawa T; Akaike T; Greish K; Maeda H
    Int J Cancer; 2004 Mar; 109(1):1-8. PubMed ID: 14735461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation.
    Iyer AK; Greish K; Seki T; Okazaki S; Fang J; Takeshita K; Maeda H
    J Drug Target; 2007; 15(7-8):496-506. PubMed ID: 17671896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor.
    Fang J; Sawa T; Akaike T; Akuta T; Sahoo SK; Khaled G; Hamada A; Maeda H
    Cancer Res; 2003 Jul; 63(13):3567-74. PubMed ID: 12839943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxystress inducing antitumor therapeutics via tumor-targeted delivery of PEG-conjugated D-amino acid oxidase.
    Fang J; Deng D; Nakamura H; Akuta T; Qin H; Iyer AK; Greish K; Maeda H
    Int J Cancer; 2008 Mar; 122(5):1135-44. PubMed ID: 17990314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity.
    Sahoo SK; Sawa T; Fang J; Tanaka S; Miyamoto Y; Akaike T; Maeda H
    Bioconjug Chem; 2002; 13(5):1031-8. PubMed ID: 12236785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent.
    Park S; Kwon B; Yang W; Han E; Yoo W; Kwon BM; Lee D
    J Control Release; 2014 Dec; 196():19-27. PubMed ID: 25278257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect.
    Fang J; Greish K; Qin H; Liao L; Nakamura H; Takeya M; Maeda H
    Eur J Pharm Biopharm; 2012 Aug; 81(3):540-7. PubMed ID: 22576132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation.
    Noh J; Jung E; Lee J; Hyun H; Hong S; Lee D
    Biomacromolecules; 2019 Feb; 20(2):1109-1117. PubMed ID: 30605610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging.
    Fang J; Tsukigawa K; Liao L; Yin H; Eguchi K; Maeda H
    J Drug Target; 2016; 24(5):399-407. PubMed ID: 26302870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.
    Nakamura H; Fang J; Gahininath B; Tsukigawa K; Maeda H
    J Control Release; 2011 Nov; 155(3):367-75. PubMed ID: 21600248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Enzymatically Highly Active Pegylated-D-Amino Acid Oxidase and Its Application to Antitumor Therapy.
    Nakamura H; Enoch A; Iwaya S; Furusho S; Tsunoda S; Haratake M
    Curr Drug Deliv; 2021; 18(8):1121-1129. PubMed ID: 33550973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue.
    Sawa T; Wu J; Akaike T; Maeda H
    Cancer Res; 2000 Feb; 60(3):666-71. PubMed ID: 10676651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide.
    Fang J; Sawa T; Akaike T; Maeda H
    Cancer Res; 2002 Jun; 62(11):3138-43. PubMed ID: 12036926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents.
    Kongpetch S; Kukongviriyapan V; Prawan A; Senggunprai L; Kukongviriyapan U; Buranrat B
    PLoS One; 2012; 7(4):e34994. PubMed ID: 22514698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy.
    Regehly M; Greish K; Rancan F; Maeda H; Böhm F; Röder B
    Bioconjug Chem; 2007; 18(2):494-9. PubMed ID: 17279724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice.
    Nowis D; Bugajski M; Winiarska M; Bil J; Szokalska A; Salwa P; Issat T; Was H; Jozkowicz A; Dulak J; Stoklosa T; Golab J
    BMC Cancer; 2008 Jul; 8():197. PubMed ID: 18620555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of pegylated hemin for reactive oxygen species-related diseases via induction of heme oxygenase-1: results from a rat hepatic ischemia/reperfusion injury model.
    Fang J; Qin H; Seki T; Nakamura H; Tsukigawa K; Shin T; Maeda H
    J Pharmacol Exp Ther; 2011 Dec; 339(3):779-89. PubMed ID: 21890508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of Hsp32 in solid tumors and leukemias: a novel approach to optimize anticancer therapy.
    Gleixner KV; Mayerhofer M; Vales A; Gruze A; Hörmann G; Cerny-Reiterer S; Lackner E; Hadzijusufovic E; Herrmann H; Iyer AK; Krauth MT; Pickl WF; Marian B; Panzer-Grümayer R; Sillaber C; Maeda H; Zielinski C; Valent P
    Curr Cancer Drug Targets; 2009 Aug; 9(5):675-89. PubMed ID: 19508170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.