These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 17672507)
1. Nonequilibrium quantum transport properties of a silver atomic switch. Wang Z; Kadohira T; Tada T; Watanabe S Nano Lett; 2007 Sep; 7(9):2688-92. PubMed ID: 17672507 [TBL] [Abstract][Full Text] [Related]
2. Chemical doping and electron-hole conduction asymmetry in graphene devices. Farmer DB; Golizadeh-Mojarad R; Perebeinos V; Lin YM; Tulevski GS; Tsang JC; Avouris P Nano Lett; 2009 Jan; 9(1):388-92. PubMed ID: 19102701 [TBL] [Abstract][Full Text] [Related]
3. Light-controlled conductance switching of ordered metal-molecule-metal devices. van der Molen SJ; Liao J; Kudernac T; Agustsson JS; Bernard L; Calame M; van Wees BJ; Feringa BL; Schönenberger C Nano Lett; 2009 Jan; 9(1):76-80. PubMed ID: 19072312 [TBL] [Abstract][Full Text] [Related]
4. Tuning the conductance of a molecular switch. Del Valle M; Gutiérrez R; Tejedor C; Cuniberti G Nat Nanotechnol; 2007 Mar; 2(3):176-9. PubMed ID: 18654249 [TBL] [Abstract][Full Text] [Related]
5. Memory applications and electrical bistability of semiconducting nanoparticles: do the phenomena depend on bandgap? Das BC; Pal AJ Small; 2008 May; 4(5):542-7. PubMed ID: 18421723 [No Abstract] [Full Text] [Related]
6. Temperature and composition dependent structural evolution of AgPd bimetallic nanoparticle: phase diagram of (AgPd)151 nanoparticle. Kim HY; Kim DH; Lee HM J Nanosci Nanotechnol; 2011 Mar; 11(3):2251-5. PubMed ID: 21449376 [TBL] [Abstract][Full Text] [Related]
7. Fast switching behavior of nanoscale Ag6In5Sb59Te30 based nanopillar type phase change memory. Hong SH; Bae BJ; Lee H Nanotechnology; 2010 Jan; 21(2):025703. PubMed ID: 19955612 [TBL] [Abstract][Full Text] [Related]
8. Tunable electrochemical switch of the optical properties of metallic nanoparticles. Leroux Y; Lacroix JC; Fave C; Trippe G; Félidj N; Aubard J; Hohenau A; Krenn JR ACS Nano; 2008 Apr; 2(4):728-32. PubMed ID: 19206604 [TBL] [Abstract][Full Text] [Related]
9. Conductance switching in Ag(2)S devices fabricated by in situ sulfurization. Morales-Masis M; van der Molen SJ; Fu WT; Hesselberth MB; van Ruitenbeek JM Nanotechnology; 2009 Mar; 20(9):095710. PubMed ID: 19417506 [TBL] [Abstract][Full Text] [Related]
17. Single electron charging in optically active nanowire quantum dots. van Kouwen MP; Reimer ME; Hidma AW; van Weert MH; Algra RE; Bakkers EP; Kouwenhoven LP; Zwiller V Nano Lett; 2010 May; 10(5):1817-22. PubMed ID: 20387798 [TBL] [Abstract][Full Text] [Related]
18. Photoassisted formation of an atomic switch. Hino T; Tanaka H; Hasegawa T; Aono M; Ogawa T Small; 2010 Aug; 6(16):1745-8. PubMed ID: 20629052 [No Abstract] [Full Text] [Related]
19. Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties. Ma X; Zhao Y; Jiang X; Liu W; Liu S; Tang Z Chemphyschem; 2012 Jul; 13(10):2531-5. PubMed ID: 22407766 [No Abstract] [Full Text] [Related]
20. Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays. Yang B; Lu N; Qi D; Ma R; Wu Q; Hao J; Liu X; Mu Y; Reboud V; Kehagias N; Torres CM; Boey FY; Chen X; Chi L Small; 2010 May; 6(9):1038-43. PubMed ID: 20394069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]