BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17672644)

  • 1. Intracochlear pressure and derived quantities from a three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward three-dimensional analysis of cochlear structure.
    Steele CR
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):238-51. PubMed ID: 10529645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear model including three-dimensional fluid and four modes of partition flexibility.
    Taber LA; Steele CR
    J Acoust Soc Am; 1981 Aug; 70(2):426-36. PubMed ID: 7288028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model and analysis for the nonlinear amplification of waves in the cochlea.
    Fessel K; Holmes MH
    Math Biosci; 2018 Jul; 301():10-20. PubMed ID: 29382493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental look at cochlear mechanics.
    Dancer A
    Audiology; 1992; 31(6):301-12. PubMed ID: 1492814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method.
    Lim KM; Steele CR
    Hear Res; 2002 Aug; 170(1-2):190-205. PubMed ID: 12208552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the fluid-structure interaction in the cochlea.
    Rapson MJ; Hamilton TJ; Tapson JC
    J Acoust Soc Am; 2014 Jul; 136(1):284-300. PubMed ID: 24993214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a physical model of the human cochlea using micro-fabrication methods.
    Wittbrodt MJ; Steele CR; Puria S
    Audiol Neurootol; 2006; 11(2):104-12. PubMed ID: 16439833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics of instabilities in a state space model of the human cochlea.
    Ku EM; Elliott SJ; Lineton B
    J Acoust Soc Am; 2008 Aug; 124(2):1068-79. PubMed ID: 18681597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-dimensional cochlear fluid model based on conformal mapping.
    Lüling H; Franosch JM; van Hemmen JL
    J Acoust Soc Am; 2010 Dec; 128(6):3577-84. PubMed ID: 21218890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mammalian cochlear mechanics.
    Kolston PJ
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3676-81. PubMed ID: 10097096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of Location-Dependent Organ of Corti Micro-Mechanics.
    Liu Y; Gracewski SM; Nam JH
    PLoS One; 2015; 10(8):e0133284. PubMed ID: 26317521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling 3-D deformation of outer hair cells and their production of the active force in the cochlea.
    Spector AA; Ameen M; Schmiedt RA
    Biomech Model Mechanobiol; 2002 Oct; 1(2):123-35. PubMed ID: 14595545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss.
    Wang Y; Steele CR; Puria S
    Sci Rep; 2016 Jan; 6():19475. PubMed ID: 26792556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.