These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17672664)

  • 1. Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models.
    Deligianni DD; Apostolopoulos KN
    J Acoust Soc Am; 2007 Aug; 122(2):1180-90. PubMed ID: 17672664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model.
    Jenson F; Padilla F; Laugier P
    Ultrasound Med Biol; 2003 Mar; 29(3):455-64. PubMed ID: 12706197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging.
    Apostolopoulos KN; Deligianni DD
    J Acoust Soc Am; 2008 Feb; 123(2):1179-87. PubMed ID: 18247917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone.
    Padilla F; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e57-60. PubMed ID: 16904147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model.
    Guo X; Zhang D; Gong X
    Phys Med Biol; 2007 Jan; 52(1):29-40. PubMed ID: 17183126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of trabecular thickness using ultrasonic backcatter.
    Padilla F; Jenson F; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):3-22. PubMed ID: 16924879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz.
    Il Lee K; Joo Choi M
    J Acoust Soc Am; 2012 Jan; 131(1):EL67-73. PubMed ID: 22280732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results.
    Chaffaï S; Roberjot V; Peyrin F; Berger G; Laugier P
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2403-11. PubMed ID: 11108380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure.
    Padilla F; Peyrin F; Laugier P
    J Acoust Soc Am; 2003 Feb; 113(2):1122-9. PubMed ID: 12597205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone.
    Li Y; Li B; Li Y; Liu C; Xu F; Zhang R; Ta D; Wang W
    Ultrason Imaging; 2019 Sep; 41(5):271-289. PubMed ID: 31307317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of marrow on the high frequency ultrasonic properties of cancellous bone.
    Hoffmeister BK; Auwarter JA; Rho JY
    Phys Med Biol; 2002 Sep; 47(18):3419-27. PubMed ID: 12375829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic scattering from double-diffusive microstructure.
    Lavery AC; Ross T
    J Acoust Soc Am; 2007 Sep; 122(3):1449. PubMed ID: 17927406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.