BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17673081)

  • 21. Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA).
    Van Lanen SG; Iwata-Reuyl D
    Biochemistry; 2003 May; 42(18):5312-20. PubMed ID: 12731872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of aspartate 143 in Escherichia coli tRNA-guanine transglycosylase: alteration of heterocyclic substrate specificity.
    Todorov KA; Garcia GA
    Biochemistry; 2006 Jan; 45(2):617-25. PubMed ID: 16401090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of archaeosine tRNA-guanine transglycosylase.
    Ishitani R; Nureki O; Fukai S; Kijimoto T; Nameki N; Watanabe M; Kondo H; Sekine M; Okada N; Nishimura S; Yokoyama S
    J Mol Biol; 2002 May; 318(3):665-77. PubMed ID: 12054814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-affinity inhibitors of Zymomonas mobilis tRNA-guanine transglycosylase through convergent optimization.
    Barandun LJ; Immekus F; Kohler PC; Ritschel T; Heine A; Orlando P; Klebe G; Diederich F
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1798-807. PubMed ID: 23999303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-Specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase.
    Tota EM; Devaraj NK
    J Am Chem Soc; 2023 Apr; 145(14):8099-8106. PubMed ID: 36988146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism.
    Stengl B; Reuter K; Klebe G
    Chembiochem; 2005 Nov; 6(11):1926-39. PubMed ID: 16206323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase.
    Grädler U; Gerber HD; Goodenough-Lashua DM; Garcia GA; Ficner R; Reuter K; Stubbs MT; Klebe G
    J Mol Biol; 2001 Feb; 306(3):455-67. PubMed ID: 11178905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase.
    Behrens C; Biela I; Petiot-Bécard S; Botzanowski T; Cianférani S; Sager CP; Klebe G; Heine A; Reuter K
    Biochemistry; 2018 Jul; 57(26):3953-3965. PubMed ID: 29862811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism-based strategies for trapping and crystallizing complexes of RNA-modifying enzymes.
    Guelorget A; Golinelli-Pimpaneau B
    Structure; 2011 Mar; 19(3):282-91. PubMed ID: 21397180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific Covalent Labeling of DNA Substrates by an RNA Transglycosylase.
    Tota EM; Devaraj NK
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification, crystallization, and preliminary x-ray diffraction studies of tRNA-guanine transglycosylase from Zymomonas mobilis.
    Romier C; Ficner R; Reuter K; Suck D
    Proteins; 1996 Apr; 24(4):516-9. PubMed ID: 8860000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.
    Ehret F; Zhou CY; Alexander SC; Zhang D; Devaraj NK
    Mol Pharm; 2018 Mar; 15(3):737-742. PubMed ID: 28749687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The PUA domain - a structural and functional overview.
    Pérez-Arellano I; Gallego J; Cervera J
    FEBS J; 2007 Oct; 274(19):4972-84. PubMed ID: 17803682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-Specific Covalent Labeling of RNA by Enzymatic Transglycosylation.
    Alexander SC; Busby KN; Cole CM; Zhou CY; Devaraj NK
    J Am Chem Soc; 2015 Oct; 137(40):12756-9. PubMed ID: 26393285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Replacement of water molecules in a phosphate binding site by furanoside-appended lin-benzoguanine ligands of tRNA-guanine transglycosylase (TGT).
    Barandun LJ; Ehrmann FR; Zimmerli D; Immekus F; Giroud M; Grünenfelder C; Schweizer WB; Bernet B; Betz M; Heine A; Klebe G; Diederich F
    Chemistry; 2015 Jan; 21(1):126-35. PubMed ID: 25483606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification.
    Boschi-Muller S; Motorin Y
    Biochemistry (Mosc); 2013 Dec; 78(13):1392-404. PubMed ID: 24490730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic "fingerprinting".
    Liu S; Bokinsky G; Walter NG; Zhuang X
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12634-9. PubMed ID: 17496145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugar Acetonides are a Superior Motif for Addressing the Large, Solvent-Exposed Ribose-33 Pocket of tRNA-Guanine Transglycosylase.
    Movsisyan LD; Schäfer E; Nguyen A; Ehrmann FR; Schwab A; Rossolini T; Zimmerli D; Wagner B; Daff H; Heine A; Klebe G; Diederich F
    Chemistry; 2018 Jul; 24(39):9957-9967. PubMed ID: 29939431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystallographic study of inhibitors of tRNA-guanine transglycosylase suggests a new structure-based pharmacophore for virtual screening.
    Brenk R; Meyer EA; Reuter K; Stubbs MT; Garcia GA; Diederich F; Klebe G
    J Mol Biol; 2004 Apr; 338(1):55-75. PubMed ID: 15050823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swapping Interface Contacts in the Homodimeric tRNA-Guanine Transglycosylase: An Option for Functional Regulation.
    Ehrmann FR; Kalim J; Pfaffeneder T; Bernet B; Hohn C; Schäfer E; Botzanowski T; Cianférani S; Heine A; Reuter K; Diederich F; Klebe G
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10085-10090. PubMed ID: 29927035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.