These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17673081)

  • 41. Queuosine modification of tRNA: its divergent role in cellular machinery.
    Vinayak M; Pathak C
    Biosci Rep; 2009 Nov; 30(2):135-48. PubMed ID: 19925456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.
    Jakobi S; Nguyen TX; Debaene F; Metz A; Sanglier-Cianférani S; Reuter K; Klebe G
    Proteins; 2014 Oct; 82(10):2713-32. PubMed ID: 24975703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fragment Screening Hit Draws Attention to a Novel Transient Pocket Adjacent to the Recognition Site of the tRNA-Modifying Enzyme TGT.
    Hassaan E; Hohn C; Ehrmann FR; Goetzke FW; Movsisyan L; Hüfner-Wulsdorf T; Sebastiani M; Härtsch A; Reuter K; Diederich F; Klebe G
    J Med Chem; 2020 Jul; 63(13):6802-6820. PubMed ID: 32515955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cloning and characterization of cDNA encoding the rabbit tRNA-guanine transglycosylase 60-kilodalton subunit.
    Deshpande KL; Seubert PH; Tillman DM; Farkas WR; Katze JR
    Arch Biochem Biophys; 1996 Feb; 326(1):1-7. PubMed ID: 8579355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys).
    Helm M; Attardi G
    J Mol Biol; 2004 Mar; 337(3):545-60. PubMed ID: 15019776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Defective transfer RNA-queuine modification in C3H10T1/2 murine fibroblasts transfected with oncogenic ras.
    Morgan CJ; Merrill FL; Trewyn RW
    Cancer Res; 1996 Feb; 56(3):594-8. PubMed ID: 8564977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Launching spiking ligands into a protein-protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme.
    Immekus F; Barandun LJ; Betz M; Debaene F; Petiot S; Sanglier-Cianferani S; Reuter K; Diederich F; Klebe G
    ACS Chem Biol; 2013; 8(6):1163-78. PubMed ID: 23534552
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How to replace the residual solvation shell of polar active site residues to achieve nanomolar inhibition of tRNA-guanine transglycosylase.
    Ritschel T; Kohler PC; Neudert G; Heine A; Diederich F; Klebe G
    ChemMedChem; 2009 Dec; 4(12):2012-23. PubMed ID: 19894214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT.
    Ritschel T; Hoertner S; Heine A; Diederich F; Klebe G
    Chembiochem; 2009 Mar; 10(4):716-27. PubMed ID: 19199329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What Glues a Homodimer Together: Systematic Analysis of the Stabilizing Effect of an Aromatic Hot Spot in the Protein-Protein Interface of the tRNA-Modifying Enzyme Tgt.
    Jakobi S; Nguyen PT; Debaene F; Cianférani S; Reuter K; Klebe G
    ACS Chem Biol; 2015 Aug; 10(8):1897-907. PubMed ID: 25951081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic covalent labeling of RNA with RNA transglycosylation at guanosine (RNA-TAG).
    Busby KN; Devaraj NK
    Methods Enzymol; 2020; 641():373-399. PubMed ID: 32713531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Possible involvement of queuine in oxidative metabolism.
    Szabo L; Nishimura S; Farkas WR
    Biofactors; 1988 Oct; 1(3):241-4. PubMed ID: 3256323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Queuine Analogues Incorporating the 7-Aminomethyl-7-deazaguanine Core: Structure-Activity Relationships in the Treatment of Experimental Autoimmune Encephalomyelitis.
    Cotter M; Varghese S; Chevot F; Fergus C; Kelly VP; Connon SJ; Southern JM
    ChemMedChem; 2023 Sep; 18(17):e202300207. PubMed ID: 37350546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescent turn-on probes for wash-free mRNA imaging
    Zhou CY; Alexander SC; Devaraj NK
    Chem Sci; 2017 Oct; 8(10):7169-7173. PubMed ID: 29081948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transglycosylation: a mechanism for RNA modification (and editing?).
    Garcia GA; Kittendorf JD
    Bioorg Chem; 2005 Jun; 33(3):229-51. PubMed ID: 15888313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic RNA Biotinylation for Affinity Purification and Identification of RNA-Protein Interactions.
    Busby KN; Fulzele A; Zhang D; Bennett EJ; Devaraj NK
    ACS Chem Biol; 2020 Aug; 15(8):2247-2258. PubMed ID: 32706237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic analysis of regeneration by dilution of a covalently modified protein.
    Rakitzis ET
    Biochem J; 1990 Jun; 268(3):669-70. PubMed ID: 2363704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Denaturing of phenolases].
    ENSELME J; PETAT JM; MONESTIER J
    Bull Soc Chim Biol (Paris); 1950; 32(11-12):872-8. PubMed ID: 14812302
    [No Abstract]   [Full Text] [Related]  

  • 59. Implications of widespread covalent modification of mRNA.
    Cooper TA
    Circ Res; 2012 Dec; 111(12):1491-3. PubMed ID: 23223930
    [No Abstract]   [Full Text] [Related]  

  • 60. Radical SAM-Mediated Methylation of Ribosomal RNA.
    Stojković V; Fujimori DG
    Methods Enzymol; 2015; 560():355-76. PubMed ID: 26253978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.