BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 17673091)

  • 1. A dedicated computational approach for the identification of archaeal H/ACA sRNAs.
    Muller S; Charpentier B; Branlant C; Leclerc F
    Methods Enzymol; 2007; 425():355-87. PubMed ID: 17673091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes.
    Myslyuk I; Doniger T; Horesh Y; Hury A; Hoffer R; Ziporen Y; Michaeli S; Unger R
    BMC Bioinformatics; 2008 Nov; 9():471. PubMed ID: 18986541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs.
    Laserson U; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing expectation values for RNA motifs using discrete convolutions.
    Lambert A; Legendre M; Fontaine JF; Gautheret D
    BMC Bioinformatics; 2005 May; 6():118. PubMed ID: 15892887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ERPIN server: an interface to profile-based RNA motif identification.
    Lambert A; Fontaine JF; Legendre M; Leclerc F; Permal E; Major F; Putzer H; Delfour O; Michot B; Gautheret D
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W160-5. PubMed ID: 15215371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA structure and function in C/D and H/ACA s(no)RNPs.
    Henras AK; Dez C; Henry Y
    Curr Opin Struct Biol; 2004 Jun; 14(3):335-43. PubMed ID: 15193314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A method for prediction of conserved RNA secondary structures].
    Mironov AA
    Mol Biol (Mosk); 2007; 41(4):711-8. PubMed ID: 17936993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes.
    Livny J; Fogel MA; Davis BM; Waldor MK
    Nucleic Acids Res; 2005; 33(13):4096-105. PubMed ID: 16049021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of archaeal H/ACA sRNPs and test of their activity.
    Charpentier B; Fourmann JB; Branlant C
    Methods Enzymol; 2007; 425():389-405. PubMed ID: 17673092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational analysis of RNAs.
    Eddy SR
    Cold Spring Harb Symp Quant Biol; 2006; 71():117-28. PubMed ID: 17381287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of signal peptides in archaea.
    Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ
    Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analyses of retrogenes derived from the human box H/ACA snoRNAs.
    Luo Y; Li S
    Nucleic Acids Res; 2007; 35(2):559-71. PubMed ID: 17175533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CID-miRNA: a web server for prediction of novel miRNA precursors in human genome.
    Tyagi S; Vaz C; Gupta V; Bhatia R; Maheshwari S; Srinivasan A; Bhattacharya A
    Biochem Biophys Res Commun; 2008 Aug; 372(4):831-4. PubMed ID: 18522801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA structure: bioinformatic analysis.
    Jossinet F; Ludwig TE; Westhof E
    Curr Opin Microbiol; 2007 Jun; 10(3):279-85. PubMed ID: 17548241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined approach for locating box H/ACA snoRNAs in the human genome.
    Eo HS; Jo KS; Lee SW; Kim CB; Kim W
    Mol Cells; 2005 Aug; 20(1):35-42. PubMed ID: 16258239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nop10 is a conserved H/ACA snoRNP molecular adaptor.
    Reichow SL; Varani G
    Biochemistry; 2008 Jun; 47(23):6148-56. PubMed ID: 18473479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined in silico and experimental identification of the Pyrococcus abyssi H/ACA sRNAs and their target sites in ribosomal RNAs.
    Muller S; Leclerc F; Behm-Ansmant I; Fourmann JB; Charpentier B; Branlant C
    Nucleic Acids Res; 2008 May; 36(8):2459-75. PubMed ID: 18304947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting conserved secondary structures in RNA molecules using constrained structural alignment.
    Khaladkar M; Patel V; Bellofatto V; Wilusz J; Wang JT
    Comput Biol Chem; 2008 Aug; 32(4):264-72. PubMed ID: 18472302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches for the discovery of bacterial small RNAs.
    Kulkarni RV; Kulkarni PR
    Methods; 2007 Oct; 43(2):131-9. PubMed ID: 17889800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Predicting RNA secondary structures including pseudoknots by covariance with stacking and minimum free energy].
    Yang J; Luo Z; Fang X; Wang J; Tang K
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):659-64. PubMed ID: 18616179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.