These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 17673224)
1. Formation mechanism of supramolecular hydrogels in the presence of L-phenylalanine derivative as a hydrogelator. Fu X; Wang N; Zhang S; Wang H; Yang Y J Colloid Interface Sci; 2007 Nov; 315(1):376-81. PubMed ID: 17673224 [TBL] [Abstract][Full Text] [Related]
2. Luminescence enhancement of europium(III) originating from self-assembled supramolecular hydrogels. Wang H; Li X; Fang F; Yang Y Dalton Trans; 2010 Aug; 39(31):7294-300. PubMed ID: 20589307 [TBL] [Abstract][Full Text] [Related]
3. Thermo-reversibility of the fluorescence enhancement of acridine orange induced by supramolecular self-assembly. Wang H; Zhang W; Dong X; Yang Y Talanta; 2009 Mar; 77(5):1864-8. PubMed ID: 19159811 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous formation of vesicles and chiral self-assemblies of sodium N-(4-dodecyloxybenzoyl)-L-valinate in water. Mohanty A; Dey J Langmuir; 2004 Sep; 20(20):8452-9. PubMed ID: 15379460 [TBL] [Abstract][Full Text] [Related]
5. Effect of hydrogen-bonding interactions on the self-assembly formation of sodium N-(11-acrylamidoundecanoyl)-L-serinate, L-asparaginate, and L-glutaminate in aqueous solution. Roy S; Dey J J Colloid Interface Sci; 2007 Mar; 307(1):229-34. PubMed ID: 17141258 [TBL] [Abstract][Full Text] [Related]
6. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
7. l-Lysine-based supramolecular hydrogels containing various inorganic ions. Suzuki M; Yumoto M; Shirai H; Hanabusa K Org Biomol Chem; 2005 Aug; 3(16):3073-8. PubMed ID: 16186942 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular helix of an amphiphilic pyrene derivative induced by chiral tryptophan through electrostatic interactions. Xiao J; Xu J; Cui S; Liu H; Wang S; Li Y Org Lett; 2008 Feb; 10(4):645-8. PubMed ID: 18217768 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
10. A smart supramolecular hydrogel of N(alpha)-(4-n-alkyloxybenzoyl)-L-histidine exhibiting pH-modulated properties. Patra T; Pal A; Dey J Langmuir; 2010 Jun; 26(11):7761-7. PubMed ID: 20380403 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydrogen bonding on the physicochemical properties and bilayer self-assembly formation of N-(2-hydroxydodecyl)-L-alanine in aqueous solution. Ghosh A; Dey J Langmuir; 2008 Jun; 24(12):6018-26. PubMed ID: 18481882 [TBL] [Abstract][Full Text] [Related]
12. Supramolecular hydrogels respond to ligand-receptor interaction. Zhang Y; Gu H; Yang Z; Xu B J Am Chem Soc; 2003 Nov; 125(45):13680-1. PubMed ID: 14599204 [TBL] [Abstract][Full Text] [Related]
13. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Kamikawa Y; Nishii M; Kato T Chemistry; 2004 Nov; 10(23):5942-51. PubMed ID: 15532055 [TBL] [Abstract][Full Text] [Related]
14. Water evaporation analysis of L-phenylalanine from initial aqueous solutions to powder state by vibrational spectroscopy. Olsztynska S; Dupuy N; Vrielynck L; Komorowska M Appl Spectrosc; 2006 Sep; 60(9):1040-53. PubMed ID: 17002830 [TBL] [Abstract][Full Text] [Related]
15. Construction of chemical-responsive supramolecular hydrogels from guest-modified cyclodextrins. Deng W; Yamaguchi H; Takashima Y; Harada A Chem Asian J; 2008 Apr; 3(4):687-95. PubMed ID: 18293292 [TBL] [Abstract][Full Text] [Related]
16. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity. Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627 [TBL] [Abstract][Full Text] [Related]
17. Dynamic supramolecular polymers based on benzene-1,3,5-tricarboxamides: the influence of amide connectivity on aggregate stability and amplification of chirality. Stals PJ; Everts JC; de Bruijn R; Filot IA; Smulders MM; Martín-Rapún R; Pidko EA; de Greef TF; Palmans AR; Meijer EW Chemistry; 2010 Jan; 16(3):810-21. PubMed ID: 20025000 [TBL] [Abstract][Full Text] [Related]
18. Organogelation by polymer organogelators with a L-lysine derivative: formation of a three-dimensional network consisting of supramolecular and conventional polymers. Suzuki M; Setoguchi C; Shirai H; Hanabusa K Chemistry; 2007; 13(29):8193-200. PubMed ID: 17639539 [TBL] [Abstract][Full Text] [Related]
19. Formation of supramolecular hydrogel microspheres via microfluidics. Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748 [TBL] [Abstract][Full Text] [Related]
20. Noncovalent synthesis of shape-persistent cyclic hexamers from ditopic hydrazide-based supramolecular synthons and asymmetric induction of supramolecular chirality. Yang Y; Xue M; Xiang JF; Chen CF J Am Chem Soc; 2009 Sep; 131(35):12657-63. PubMed ID: 19685881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]