BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 17673242)

  • 1. pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations.
    Ahamed T; Nfor BK; Verhaert PD; van Dedem GW; van der Wielen LA; Eppink MH; van de Sandt EJ; Ottens M
    J Chromatogr A; 2007 Sep; 1164(1-2):181-8. PubMed ID: 17673242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional capillary liquid chromatography: pH gradient ion exchange and reversed phase chromatography for rapid separation of proteins.
    Pepaj M; Wilson SR; Novotna K; Lundanes E; Greibrokk T
    J Chromatogr A; 2006 Jul; 1120(1-2):132-41. PubMed ID: 16516903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength.
    Zhang L; Patapoff T; Farnan D; Zhang B
    J Chromatogr A; 2013 Jan; 1272():56-64. PubMed ID: 23253120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of pH-related parameters in ion-exchange chromatography using pH-gradient operations.
    Ahamed T; Chilamkurthi S; Nfor BK; Verhaert PD; van Dedem GW; van der Wielen LA; Eppink MH; van de Sandt EJ; Ottens M
    J Chromatogr A; 2008 Jun; 1194(1):22-9. PubMed ID: 18154981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.
    Farnan D; Moreno GT
    Anal Chem; 2009 Nov; 81(21):8846-57. PubMed ID: 19795895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of protein charge variants with induced pH gradients using anion exchange chromatographic columns.
    Pabst TM; Carta G; Ramasubramanyan N; Hunter AK; Mensah P; Gustafson ME
    Biotechnol Prog; 2008; 24(5):1096-106. PubMed ID: 19194919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.
    Rea JC; Moreno GT; Lou Y; Farnan D
    J Pharm Biomed Anal; 2011 Jan; 54(2):317-23. PubMed ID: 20884149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphoteric, buffering chromatographic beads for proteome prefractionation. I: theoretical model.
    Fortis F; Girot P; Brieau O; Boschetti E; Castagna A; Righetti PG
    Proteomics; 2005 Feb; 5(3):620-8. PubMed ID: 15693062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.
    Kröner F; Hubbuch J
    J Chromatogr A; 2013 Apr; 1285():78-87. PubMed ID: 23489486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups.
    Pabst TM; Antos D; Carta G; Ramasubramanyan N; Hunter AK
    J Chromatogr A; 2008 Feb; 1181(1-2):83-94. PubMed ID: 18194806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.
    Tsonev LI; Hirsh AG
    J Chromatogr A; 2008 Jul; 1200(2):166-82. PubMed ID: 18554604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.
    Ishihara T; Kadoya T; Yamamoto S
    J Chromatogr A; 2007 Aug; 1162(1):34-40. PubMed ID: 17399733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins.
    Staby A; Jensen RH; Bensch M; Hubbuch J; Dünweber DL; Krarup J; Nielsen J; Lund M; Kidal S; Hansen TB; Jensen IH
    J Chromatogr A; 2007 Sep; 1164(1-2):82-94. PubMed ID: 17658538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of protein mixtures using pH-gradient cation-exchange chromatography.
    Ng PK; He J; Snyder MA
    J Chromatogr A; 2009 Feb; 1216(9):1372-6. PubMed ID: 19168182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.
    Kluters S; Wittkopp F; Jöhnck M; Frech C
    J Sep Sci; 2016 Feb; 39(4):663-75. PubMed ID: 26549715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a solution isoelectric focusing protocol as an alternative to ion exchange chromatography for charge-based proteome prefractionation.
    Tran JC; Wall MJ; Doucette AA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Mar; 877(8-9):807-13. PubMed ID: 19246255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.
    Lu JG
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1613-20. PubMed ID: 15547973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary interactions, an unexpected problem emerged between hydroxyl containing analytes and fused silica capillaries in anion-exchange micro-liquid chromatography.
    Castillo A; Roig-Navarro AF; Pozo OJ
    J Chromatogr A; 2007 Nov; 1172(2):179-85. PubMed ID: 17959190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt tolerant membrane adsorbers for robust impurity clearance.
    Riordan WT; Heilmann SM; Brorson K; Seshadri K; Etzel MR
    Biotechnol Prog; 2009; 25(6):1695-702. PubMed ID: 19728393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.