These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17673325)

  • 1. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: a case study with rifamycin B fermentation.
    Doan XT; Srinivasan R; Bapat PM; Wangikar PP
    J Biotechnol; 2007 Oct; 132(2):156-66. PubMed ID: 17673325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online.
    Bapat PM; Das D; Dave NN; Wangikar PP
    J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation.
    Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP
    Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach.
    Bapat PM; Wangikar PP
    Biotechnol Bioeng; 2004 Apr; 86(2):201-8. PubMed ID: 15052640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cybernetic model to predict the effect of freely available nitrogen substrate on rifamycin B production in complex media.
    Bapat PM; Sohoni SV; Moses TA; Wangikar PP
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):662-70. PubMed ID: 16534611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis.
    Lee JM; Yoo CK; Lee IB
    J Biotechnol; 2004 May; 110(2):119-36. PubMed ID: 15121332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-up of rifamycin B fermentation with Amycolatoposis mediterranei.
    Jin ZH; Lin JP; Cen PL
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1590-6. PubMed ID: 15547969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis.
    Lee DS; Vanrolleghem PA
    Biotechnol Bioeng; 2003 May; 82(4):489-97. PubMed ID: 12632406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of rifemycins production by Amycolatopsis mediterranei in batch and fed-batch cultures.
    El-Enshasy HA; Beshay UI; El-Diwany AI; Omar HM; El-Kholy AG; El-Najar R
    Acta Microbiol Pol; 2003; 52(3):301-13. PubMed ID: 14743983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of extracellular protease in nitrogen substrate management during antibiotic fermentation: a process model and experimental validation.
    Bapat PM; Sinha A; Wangikar PP
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1019-28. PubMed ID: 21573685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fault detection and diagnosis in an industrial fed-batch cell culture process.
    Gunther JC; Conner JS; Seborg DE
    Biotechnol Prog; 2007; 23(4):851-7. PubMed ID: 17672519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations.
    Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T
    J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fermentation process monitoring and fault detection based on dynamic MPCA].
    Wang ZF; Yuan JQ
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):483-7. PubMed ID: 16755931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate uptake, phosphorus repression, and effect of seed culture on glycopeptide antibiotic production: process model development and experimental validation.
    Maiti SK; Singh KP; Lantz AE; Bhushan M; Wangikar PP
    Biotechnol Bioeng; 2010 Jan; 105(1):109-20. PubMed ID: 19685512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.
    Funke M; Buchenauer A; Schnakenberg U; Mokwa W; Diederichs S; Mertens A; Müller C; Kensy F; Büchs J
    Biotechnol Bioeng; 2010 Oct; 107(3):497-505. PubMed ID: 20517981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of the last stage of production phase of oxytetracycline fermentation processes.
    Xu C; Fang C; Ma Z
    Chin J Biotechnol; 1993; 9(2):109-15. PubMed ID: 8199319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass.
    Dabros M; Schuler MM; Marison IW
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1109-18. PubMed ID: 20526782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of balanced medium composition for improved rifamycin B production by isolated Amycolatopsis sp. RSP-3.
    Mahalaxmi Y; Sathish T; Prakasham RS
    Lett Appl Microbiol; 2009 Nov; 49(5):533-8. PubMed ID: 19793193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.