BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17673562)

  • 1. Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D(2) receptors.
    Prieto-Lloret J; Donnelly DF; Rico AJ; Moratalla R; González C; Rigual RJ
    J Appl Physiol (1985); 2007 Oct; 103(4):1269-75. PubMed ID: 17673562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoreceptor activity is normal in mice lacking the NK1 receptor.
    Rigual R; Rico AJ; Prieto-Lloret J; de Felipe C; González C; Donnelly DF
    Eur J Neurosci; 2002 Dec; 16(11):2078-84. PubMed ID: 12473075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An important functional role of persistent Na+ current in carotid body hypoxia transduction.
    Faustino EV; Donnelly DF
    J Appl Physiol (1985); 2006 Oct; 101(4):1076-84. PubMed ID: 16778007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of chronic hypoxia upon chemoreception.
    Powell FL
    Respir Physiol Neurobiol; 2007 Jul; 157(1):154-61. PubMed ID: 17291837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in hypoxia-induced catecholamine release from rat carotid body, in vitro.
    Donnelly DF; Doyle TP
    J Physiol; 1994 Mar; 475(2):267-75. PubMed ID: 8021833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotid body function and ventilatory responses in intermittent hypoxia. Evidence for anomalous brainstem integration of arterial chemoreceptor input.
    Gonzalez-Martín MC; Vega-Agapito MV; Conde SV; Castañeda J; Bustamante R; Olea E; Perez-Vizcaino F; Gonzalez C; Obeso A
    J Cell Physiol; 2011 Aug; 226(8):1961-9. PubMed ID: 21520047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in chemoreceptor nerve activity and catecholamine secretion in rabbit carotid body: possible role of Na+ and Ca2+ currents.
    Rigual R; Almaraz L; González C; Donnelly DF
    Pflugers Arch; 2000 Feb; 439(4):463-70. PubMed ID: 10678743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotid body dopaminergic mechanisms are functional after acclimatization to hypoxia in goats.
    Janssen PL; O'Halloran KD; Pizarro J; Dwinell MR; Bisgard GE
    Respir Physiol; 1998 Jan; 111(1):25-32. PubMed ID: 9496469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The A(2B)-D(2) receptor interaction that controls carotid body catecholamines release locates between the last two steps of hypoxic transduction cascade.
    Conde SV; Obeso A; Monteiro EC; Gonzalez C
    Adv Exp Med Biol; 2009; 648():161-8. PubMed ID: 19536477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular mechanisms of oxygen chemoreception in the carotid body.
    Gonzalez C; Lopez-Lopez JR; Obeso A; Perez-Garcia MT; Rocher A
    Respir Physiol; 1995 Dec; 102(2-3):137-47. PubMed ID: 8904006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal hypoxia disturbs the catecholamine turnover in the nucleus of the tractus solitarius and the peripheral chemoreceptors of the adult rat.
    Dalmaz Y; Lagercrantz H; Pequignot JM; Soulier V
    Pediatr Pulmonol Suppl; 1997; 16():218-9. PubMed ID: 9443281
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of MaxiK-type calcium dependent K+ channels in rat carotid body hypoxia transduction during postnatal development.
    Donnelly DF; Kim I; Yang D; Carroll JL
    Respir Physiol Neurobiol; 2011 Jun; 177(1):1-8. PubMed ID: 21356332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in dopamine D(2)-receptor modulation of the hypoxic ventilatory response with chronic hypoxia.
    Huey KA; Brown IP; Jordan MC; Powell FL
    Respir Physiol; 2000 Nov; 123(3):177-87. PubMed ID: 11007985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotid body chemoreceptor function: hypothesis based on a new circuit model.
    Krammer EB
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2507-11. PubMed ID: 353814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histaminergic and dopaminergic traits in the human carotid body.
    Lazarov NE; Reindl S; Fischer F; Gratzl M
    Respir Physiol Neurobiol; 2009 Feb; 165(2-3):131-6. PubMed ID: 19022410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical detection of catecholamine release from rat carotid body in vitro.
    Donnelly DF
    J Appl Physiol (1985); 1993 May; 74(5):2330-7. PubMed ID: 8335564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression in peripheral arterial chemoreceptors.
    Gauda EB
    Microsc Res Tech; 2002 Nov; 59(3):153-67. PubMed ID: 12384960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen chemoreception by carotid body cells in culture.
    Fishman MC; Greene WL; Platika D
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1448-50. PubMed ID: 2858098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory effects of specific carotid body hypocapnia and hypoxia in awake dogs.
    Smith CA; Harms CA; Henderson KS; Dempsey JA
    J Appl Physiol (1985); 1997 Mar; 82(3):791-8. PubMed ID: 9074965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.