These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17673567)

  • 1. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
    Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN
    J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening.
    Yalcin HC; Hallow KM; Wang J; Wei MT; Ou-Yang HD; Ghadiali SN
    Am J Physiol Lung Cell Mol Physiol; 2009 Nov; 297(5):L881-91. PubMed ID: 19700641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows.
    Higuita-Castro N; Mihai C; Hansford DJ; Ghadiali SN
    J Appl Physiol (1985); 2014 Dec; 117(11):1231-42. PubMed ID: 25213636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients.
    Gattinoni L; Vagginelli F; Chiumello D; Taccone P; Carlesso E
    Crit Care Med; 2003 Apr; 31(4 Suppl):S300-4. PubMed ID: 12682456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simvastatin Treatment Modulates Mechanically-Induced Injury and Inflammation in Respiratory Epithelial Cells.
    Higuita-Castro N; Shukla VC; Mihai C; Ghadiali SN
    Ann Biomed Eng; 2016 Dec; 44(12):3632-3644. PubMed ID: 27411707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling airflow-related shear stress during heterogeneous constriction and mechanical ventilation.
    Nucci G; Suki B; Lutchen K
    J Appl Physiol (1985); 2003 Jul; 95(1):348-56. PubMed ID: 12651864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome.
    Rocco PR; Pelosi P; de Abreu MG
    Expert Rev Respir Med; 2010 Aug; 4(4):479-89. PubMed ID: 20658909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of recruitment and injury in a heterogeneous airway network model.
    Stewart PS; Jensen OE
    J R Soc Interface; 2015 Oct; 12(111):20150523. PubMed ID: 26423440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4.
    Jacob AM; Gaver DP
    J Appl Physiol (1985); 2012 Nov; 113(9):1377-87. PubMed ID: 22898551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventilator-induced lung injury and the evolution of lung-protective strategies in acute respiratory distress syndrome.
    Gillette MA; Hess DR
    Respir Care; 2001 Feb; 46(2):130-48. PubMed ID: 11175242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of power-law rheology on cell injury during microbubble flows.
    Dailey HL; Ghadiali SN
    Biomech Model Mechanobiol; 2010 Jun; 9(3):263-79. PubMed ID: 19865840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of different modes of artificial ventilation on lung injury in dog model of acute respiratory distress syndrome].
    Wang RL; Xu JN; Sheng ZY; Fu HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2006 Jun; 18(6):334-7. PubMed ID: 16784557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dexamethasone and transdehydroandrosterone significantly reduce pulmonary epithelial cell injuries associated with mechanical ventilation.
    Al-Ruweidi MKAA; Ali FH; Shurbaji S; Popelka A; Yalcin HC
    J Appl Physiol (1985); 2021 Apr; 130(4):1143-1151. PubMed ID: 33600286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation allows goal-oriented mechanical ventilation in acute respiratory distress syndrome.
    Uttman L; Ogren H; Niklason L; Drefeldt B; Jonson B
    Crit Care; 2007; 11(2):R36. PubMed ID: 17352801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.