These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17673714)

  • 21. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms.
    Saalfeld S; Voß S; Beuing O; Preim B; Berg P
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1805-1813. PubMed ID: 31363984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aneurysmal Parent Artery-Specific Inflow Conditions for Complete and Incomplete Circle of Willis Configurations.
    Cornelissen BMW; Schneiders JJ; Sprengers ME; van den Berg R; van Ooij P; Nederveen AJ; van Bavel E; Vandertop WP; Slump CH; Marquering HA; Majoie CBLM
    AJNR Am J Neuroradiol; 2018 May; 39(5):910-915. PubMed ID: 29599169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.
    Seshadhri S; Janiga G; Beuing O; Skalej M; Thévenin D
    J Biomech Eng; 2011 Jul; 133(7):071005. PubMed ID: 21823744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An In-Vitro Flow Study Using an Artificial Circle of Willis Model for Validation of an Existing One-Dimensional Numerical Model.
    Yu H; Huang GP; Ludwig BR; Yang Z
    Ann Biomed Eng; 2019 Apr; 47(4):1023-1037. PubMed ID: 30673955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y; Lu X; Zhuang L; Wang W
    Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing Intracranial Hemodynamics in Sickle Cell Anemia: Impact of Patient-Specific Viscosity.
    Keller SB; Bumpus JM; Gatenby JC; Yang E; Kassim AA; Dampier C; Gore JC; Buck AKW
    Cardiovasc Eng Technol; 2022 Feb; 13(1):104-119. PubMed ID: 34286479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigations of flow and pressure distributions in physical model of the circle of Willis.
    Cieslicki K; Ciesla D
    J Biomech; 2005 Nov; 38(11):2302-10. PubMed ID: 16154418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of flow and vascular resistance in a model of the circle of Willis.
    Hillen B; Drinkenburg BA; Hoogstraten HW; Post L
    J Biomech; 1988; 21(10):807-14. PubMed ID: 3225267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical analysis of 3D blood flow and common carotid artery hemodynamics in the carotid artery bifurcation with stenosis.
    Antonova N; Dong X; Tosheva P; Kaliviotis E; Velcheva I
    Clin Hemorheol Microcirc; 2014; 57(2):159-73. PubMed ID: 24584325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms.
    Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y
    Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A circle of Willis simulation using distensible vessels and pulsatile flow.
    Kufahl RH; Clark ME
    J Biomech Eng; 1985 May; 107(2):112-22. PubMed ID: 3999707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT; Clark CD; Chancellor TJ; Papavassiliou DV
    J Biomech; 2008; 41(1):11-9. PubMed ID: 17919645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.
    Marzo A; Singh P; Larrabide I; Radaelli A; Coley S; Gwilliam M; Wilkinson ID; Lawford P; Reymond P; Patel U; Frangi A; Hose DR
    Ann Biomed Eng; 2011 Feb; 39(2):884-96. PubMed ID: 20972626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood flow dynamics in saccular aneurysm models of the basilar artery.
    Valencia AA; Guzmán AM; Finol EA; Amon CH
    J Biomech Eng; 2006 Aug; 128(4):516-26. PubMed ID: 16813443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation.
    Baek H; Jayaraman MV; Karniadakis GE
    Ann Biomed Eng; 2009 Dec; 37(12):2469-87. PubMed ID: 19757058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The variability of the circle of Willis: univariate and bivariate analysis.
    Hillen B
    Acta Morphol Neerl Scand; 1986; 24(2):87-101. PubMed ID: 3565095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.