These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17674121)

  • 1. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.
    Drakaki E; Makropoulou M; Serafetinides AA
    Lasers Med Sci; 2008 Jul; 23(3):267-76. PubMed ID: 17674121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic model of thermal reaction of biological tissues to laser-induced fluorescence and photodynamic therapy.
    Seteikin AY; Krasnikov IV; Drakaki E; Makropoulou M
    J Biomed Opt; 2013 Jul; 18(7):075002. PubMed ID: 23839531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of the skin reflectance spectra.
    Meglinski IV; Matcher SJ
    Comput Methods Programs Biomed; 2003 Feb; 70(2):179-86. PubMed ID: 12507793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser induced autofluorescence studies of animal skin used in modeling of human cutaneous tissue spectroscopic measurements.
    Drakaki E; Borisova E; Makropoulou M; Avramov L; Serafetinides AA; Angelov I
    Skin Res Technol; 2007 Nov; 13(4):350-9. PubMed ID: 17908185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.
    Nasouri B; Murphy TE; Berberoglu H
    J Biomed Opt; 2014; 19(7):075003. PubMed ID: 25003752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation.
    Zeng H; MacAulay C; McLean DI; Palcic B
    J Photochem Photobiol B; 1997 Apr; 38(2-3):234-40. PubMed ID: 9203387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amending of fluorescence sensor signal localization in human skin by matching of the refractive index.
    Churmakov DY; Meglinski IV; Greenhalgh DA
    J Biomed Opt; 2004; 9(2):339-46. PubMed ID: 15065900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.
    Venugopalan V; Nishioka NS; Mikić BB
    Biophys J; 1995 Oct; 69(4):1259-71. PubMed ID: 8534796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
    Ash C; Dubec M; Donne K; Bashford T
    Lasers Med Sci; 2017 Nov; 32(8):1909-1918. PubMed ID: 28900751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling.
    Zeng H; MacAulay C; McLean DI; Palcic B; Lui H
    Photochem Photobiol; 1998 Aug; 68(2):227-36. PubMed ID: 9723216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation on the use of data-driven scattering profiles in Monte Carlo simulations of ultraviolet light propagation in skin tissues.
    Baranoski GV; Krishnaswamy A; Kimmel B
    Phys Med Biol; 2004 Oct; 49(20):4799-809. PubMed ID: 15566176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser transport through thin scattering layers.
    Eze R; Kumar S
    Appl Opt; 2010 Jan; 49(3):358-68. PubMed ID: 20090800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method.
    Smithies DJ; Butler PH
    Phys Med Biol; 1995 May; 40(5):701-31. PubMed ID: 7652003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.
    Zhang R; Verkruysse W; Aguilar G; Nelson JS
    Phys Med Biol; 2005 Sep; 50(17):4075-86. PubMed ID: 16177531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Monte Carlo Simulation for Light Propagation in Tissue.
    Periyasamy V; Pramanik M
    IEEE Rev Biomed Eng; 2017; 10():122-135. PubMed ID: 28816674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms.
    Urso P; Lualdi M; Colombo A; Carrara M; Tomatis S; Marchesini R
    Phys Med Biol; 2007 May; 52(10):N229-39. PubMed ID: 17473339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.