These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17674123)

  • 1. Evaluation of photothermal effects in cartilage using FT-IR spectroscopy.
    Youn JI; Milner TE
    Lasers Med Sci; 2008 Jul; 23(3):229-35. PubMed ID: 17674123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved, light scattering measurements of cartilage and cornea denaturation due to free electron laser radiation.
    Sobol E; Sviridov A; Kitai M; Gilligan JM; Tolk NH; Edwards GS
    J Biomed Opt; 2003 Apr; 8(2):216-22. PubMed ID: 12683847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteoglycan synthesis in porcine nasal cartilage grafts following Nd:YAG (lambda = 1.32 microns) laser-mediated reshaping.
    Wong BJ; Milner TE; Kim HK; Chao K; Sun CH; Sobol EN; Nelson JS
    Photochem Photobiol; 2000 Feb; 71(2):218-24. PubMed ID: 10687397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FT-IR imaging of native and tissue-engineered bone and cartilage.
    Boskey A; Pleshko Camacho N
    Biomaterials; 2007 May; 28(15):2465-78. PubMed ID: 17175021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in the cartilage shape under the action of laser irradiation].
    Ovchinnikov IuM; Nikiforova GN; Svistushkin VM; Gamov VP; Sobol' EN; Bagratashvili VN; Omel'chenko AI; Sviridov AP; Naumidi I; Khelidonis E
    Vestn Otorinolaringol; 1995; (3):5-10. PubMed ID: 7631474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of denaturation processes in aged beef loin by Fourier transform infrared microspectroscopy.
    Kirschner C; Ofstad R; Skarpeid HJ; Høst V; Kohler A
    J Agric Food Chem; 2004 Jun; 52(12):3920-9. PubMed ID: 15186118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping.
    Youn JI; Vargas G; Wong BJ; Milner TE
    Phys Med Biol; 2005 May; 50(9):1937-50. PubMed ID: 15843728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature alterations of infrared light absorption by cartilage and cornea under free-electron laser radiation.
    Sobol EN; Sviridov AP; Kitai MS; Edwards GS
    Appl Opt; 2003 May; 42(13):2443-9. PubMed ID: 12737481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
    Protsenko DE; Zemek A; Wong BJ
    Lasers Surg Med; 2008 Mar; 40(3):202-10. PubMed ID: 18366085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structure of proteins analyzed ex vivo in vascular wall in diabetic animals using FT-IR spectroscopy.
    Majzner K; Wrobel TP; Fedorowicz A; Chlopicki S; Baranska M
    Analyst; 2013 Nov; 138(24):7400-10. PubMed ID: 24179990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Nd:YAG laser-mediated thermal damage in rabbit nasal septal cartilage.
    Li C; Protsenko DE; Zemek A; Chae YS; Wong B
    Lasers Surg Med; 2007 Jun; 39(5):451-7. PubMed ID: 17565732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FT-IR Microspectroscopy of Rat Ear Cartilage.
    Vidal Bde C; Mello ML
    PLoS One; 2016; 11(3):e0151989. PubMed ID: 27015280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression.
    Yin J; Xia Y
    Appl Spectrosc; 2010 Nov; 64(11):1199-208. PubMed ID: 21073787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An FT-IR Spectral Analysis of the Effects of γ-Radiation on Normal and Cancerous Cartilage.
    Kyriakidou M; Mavrogenis AF; Kyriazis S; Markouizou A; Theophanides T; Anastassopoulou J
    In Vivo; 2016 09-10; 30(5):599-604. PubMed ID: 27566078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.
    Brandstetter M; Genner A; Schwarzer C; Mujagic E; Strasser G; Lendl B
    Opt Express; 2014 Feb; 22(3):2656-64. PubMed ID: 24663557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition.
    Rieppo L; Saarakkala S; Jurvelin JS; Rieppo J
    J Biomed Opt; 2014 Feb; 19(2):027003. PubMed ID: 24522808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.
    Otsuka M; Fukui Y; Ozaki Y
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):194-200. PubMed ID: 19121925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O.
    Masuch R; Moss DA
    Appl Spectrosc; 2003 Nov; 57(11):1407-18. PubMed ID: 14658156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.