These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17674341)
21. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP Biomech Model Mechanobiol; 2012 Jan; 11(1-2):171-82. PubMed ID: 21416247 [TBL] [Abstract][Full Text] [Related]
22. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow. Subramanian A; Mu H; Kadambi JR; Wernet MP; Brendzel AM; Harasaki H J Heart Valve Dis; 2000 Sep; 9(5):721-31. PubMed ID: 11041190 [TBL] [Abstract][Full Text] [Related]
23. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Yin W; Alemu Y; Affeld K; Jesty J; Bluestein D Ann Biomed Eng; 2004 Aug; 32(8):1058-66. PubMed ID: 15446502 [TBL] [Abstract][Full Text] [Related]
24. Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry. Barakat M; Dvir D; Azadani AN Artif Organs; 2018 Nov; 42(11):E357-E368. PubMed ID: 30198167 [TBL] [Abstract][Full Text] [Related]
25. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. Joda A; Jin Z; Haverich A; Summers J; Korossis S J Biomech; 2016 Aug; 49(12):2502-12. PubMed ID: 26961798 [TBL] [Abstract][Full Text] [Related]
26. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. Bluestein D; Einav S; Hwang NH J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287 [TBL] [Abstract][Full Text] [Related]
27. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD. Xu L; Yang M; Ye L; Dong Z Technol Health Care; 2015; 23 Suppl 2():S443-51. PubMed ID: 26410511 [TBL] [Abstract][Full Text] [Related]
28. Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Kemp I; Dellimore K; Rodriguez R; Scheffer C; Blaine D; Weich H; Doubell A Australas Phys Eng Sci Med; 2013 Sep; 36(3):363-73. PubMed ID: 23907849 [TBL] [Abstract][Full Text] [Related]
30. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489 [TBL] [Abstract][Full Text] [Related]
31. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927 [TBL] [Abstract][Full Text] [Related]
32. CFD investigation of steady flow in bi-leaflet heart valve hinge. Wang J; Yeo TJ; Lim CS Crit Rev Biomed Eng; 2000; 28(1-2):61-7. PubMed ID: 10999366 [TBL] [Abstract][Full Text] [Related]
33. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
34. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics. Mao W; Li K; Sun W Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463 [TBL] [Abstract][Full Text] [Related]
35. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device. Lee H; Tatsumi E; Taenaka Y ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236 [TBL] [Abstract][Full Text] [Related]
36. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Engelmayr GC; Soletti L; Vigmostad SC; Budilarto SG; Federspiel WJ; Chandran KB; Vorp DA; Sacks MS Ann Biomed Eng; 2008 May; 36(5):700-12. PubMed ID: 18253834 [TBL] [Abstract][Full Text] [Related]
37. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. Nobili M; Morbiducci U; Ponzini R; Del Gaudio C; Balducci A; Grigioni M; Maria Montevecchi F; Redaelli A J Biomech; 2008 Aug; 41(11):2539-50. PubMed ID: 18579146 [TBL] [Abstract][Full Text] [Related]
38. Investigating the impact of non-Newtonian blood models within a heart pump. Al-Azawy MG; Turan A; Revell A Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069 [TBL] [Abstract][Full Text] [Related]
39. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation. Craven BA; Aycock KI; Manning KB Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978 [TBL] [Abstract][Full Text] [Related]
40. Search for an Optimal Design of a Bioprosthetic Venous Valve: In silico and in vitro Studies. Chen HY; Tien WS; Chambers SD; Dabiri D; Kassab GS Eur J Vasc Endovasc Surg; 2019 Jul; 58(1):112-119. PubMed ID: 31133446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]