BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17674857)

  • 21. Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW).
    El-Gohary F; Tawfik A; Badawy M; El-Khateeb MA
    Bioresour Technol; 2009 Apr; 100(7):2147-54. PubMed ID: 19070481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic waste activated sludge co-digestion with olive mill wastewater.
    Athanasoulia E; Melidis P; Aivasidis A
    Water Sci Technol; 2012; 65(12):2251-7. PubMed ID: 22643423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of organic pollutants in Olive Mill Wastewater by using different mineral substrates as adsorbents.
    Santi CA; Cortes S; D'Acqui LP; Sparvoli E; Pushparaj B
    Bioresour Technol; 2008 Apr; 99(6):1945-51. PubMed ID: 17499501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-Fenton oxidation of oil mill waste water: chemical degradation and biodegradability increase.
    Canepa P; Cauglia F; Caviglia P; Chelossi E
    Environ Sci Pollut Res Int; 2003; 10(4):217-20. PubMed ID: 12943004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.
    Rincón B; Borja R; Martín MA; Martín A
    Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation.
    Badawy MI; El Gohary F; Ghaly MY; Ali ME
    J Hazard Mater; 2009 Sep; 169(1-3):673-9. PubMed ID: 19457611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state of the art technology.
    Messineo A; Maniscalco MP; Volpe R
    Sci Total Environ; 2020 Feb; 703():135508. PubMed ID: 31761373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of non-biodegradable cutting oil wastewater by ultrasonication-Fenton oxidation process.
    Seo DC; Lee HJ; Hwang HN; Park MR; Kwak NW; Cho IJ; Cho JS; Seo JY; Joo WH; Park KH; Heo JS
    Water Sci Technol; 2007; 55(1-2):251-9. PubMed ID: 17305147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strategy for olive mill wastewater treatment and reuse with a sewage plant in an arid region.
    Boukchina R; Choi E; Kim S; Yu YB; Cheung YJ
    Water Sci Technol; 2007; 55(10):71-8. PubMed ID: 17564372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A modified advanced Fenton process for industrial wastewater treatment.
    Chakinala AG; Bremner DH; Burgess AE; Namkung KC
    Water Sci Technol; 2007; 55(12):59-65. PubMed ID: 17674828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of organics in reverse osmosis concentrate by electro-Fenton process.
    Zhou M; Tan Q; Wang Q; Jiao Y; Oturan N; Oturan MA
    J Hazard Mater; 2012 May; 215-216():287-93. PubMed ID: 22429623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment.
    Chen S; Sun D; Chung JS
    J Hazard Mater; 2007 Jun; 144(1-2):577-84. PubMed ID: 17141410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bioaugmentation of activated sludge with white-rot fungi on olive mill wastewater detoxification.
    Dhouib A; Ellouz M; Aloui F; Sayadi S
    Lett Appl Microbiol; 2006 Apr; 42(4):405-11. PubMed ID: 16599996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment.
    Muñoz I; Peral J; Ayllón JA; Malato S; Passarinho P; Domènech X
    Water Res; 2006 Nov; 40(19):3533-40. PubMed ID: 16989886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.
    Fragoso RA; Duarte EA
    Water Sci Technol; 2012; 66(4):887-94. PubMed ID: 22766882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioelectro-Fenton: A sustainable integrated process for removal of organic pollutants from water: Application to mineralization of metoprolol.
    Olvera-Vargas H; Cocerva T; Oturan N; Buisson D; Oturan MA
    J Hazard Mater; 2016 Dec; 319():13-23. PubMed ID: 26707983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater.
    Borja R; Alba J; Garrido SE; Martínez L; García MP; Monteoliva M; Ramos-Cormenzana A
    Biotechnol Appl Biochem; 1995 Oct; 22(2):233-46. PubMed ID: 7576261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Treatment of olive mill wastewater by a process combining an intensive treatment (Jet-Loop reactor) followed by an extensive treatment (stabilization ponds)].
    Jail A; Boukhoubza F; Nejmeddine A; Duarte JC; Sayadi S; Hassani L
    Environ Technol; 2010 Apr; 31(5):533-43. PubMed ID: 20480828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Augmentation of biodegradability of olive mill wastewater by electrochemical pre-treatment: effect on phytotoxicity and operating cost.
    Hanafi F; Belaoufi A; Mountadar M; Assobhei O
    J Hazard Mater; 2011 Jun; 190(1-3):94-9. PubMed ID: 21435785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system.
    Garcia-Castello E; Cassano A; Criscuoli A; Conidi C; Drioli E
    Water Res; 2010 Jul; 44(13):3883-92. PubMed ID: 20639013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.