BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17674857)

  • 41. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.
    Martinez-Garcia G; Johnson AC; Bachmann RT; Williams CJ; Burgoyne A; Edyvean RG
    J Hazard Mater; 2009 May; 164(2-3):1398-405. PubMed ID: 18990493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents.
    Ruíz-Delgado A; Roccamante MA; Malato S; Agüera A; Oller I
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38148-38154. PubMed ID: 32621187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Olive mill wastewater treatment strategies to obtain quality water for irrigation: A review.
    Vaz T; Quina MMJ; Martins RC; Gomes J
    Sci Total Environ; 2024 Jun; 931():172676. PubMed ID: 38670378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method.
    Zhang H; Fei C; Zhang D; Tang F
    J Hazard Mater; 2007 Jun; 145(1-2):227-32. PubMed ID: 17161909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Olive mill wastewater treatment using a simple zeolite-based low-cost method.
    Aly AA; Hasan YN; Al-Farraj AS
    J Environ Manage; 2014 Dec; 145():341-8. PubMed ID: 25113228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidative processes for olive mill wastewater treatment.
    Bettazzi E; Caretti C; Caffaz S; Azzari E; Lubello C
    Water Sci Technol; 2007; 55(10):79-87. PubMed ID: 17564373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential two-column electro-Fenton-photolytic reactor for the treatment of winery wastewater.
    Díez AM; Sanromán MA; Pazos M
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1137-1151. PubMed ID: 27796998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aspergillus niger P6 and Rhodotorula mucilaginosa CH4 used for olive mill wastewater (OMW) biological treatment in single pure and successive cultures.
    Jarboui R; Magdich S; Ayadi RJ; Gargouri A; Gharsallah N; Ammar E
    Environ Technol; 2013; 34(5-8):629-36. PubMed ID: 23837312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SBR treatment of olive mill wastewaters: dilution or pre-treatment?
    Farabegoli G; Chiavola A; Rolle E
    Water Sci Technol; 2012; 65(9):1684-91. PubMed ID: 22508133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters.
    Sanchis S; Meschede-Anglada L; Serra A; Simon FX; Sixto G; Casas N; Garcia-Montaño J
    Water Sci Technol; 2018 Jun; 77(9-10):2497-2508. PubMed ID: 29893739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants.
    Liu XW; Sun XF; Li DB; Li WW; Huang YX; Sheng GP; Yu HQ
    Water Res; 2012 Sep; 46(14):4371-8. PubMed ID: 22698252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The decontamination of bleaching effluent by pilot-scale solar Fenton process.
    Wang Z; Chen K; Li J; Mo L
    Environ Technol; 2011; 32(7-8):721-30. PubMed ID: 21879547
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater.
    Barreto-Rodrigues M; Silva FT; Paiva TC
    J Hazard Mater; 2009 Jun; 165(1-3):1224-8. PubMed ID: 19022574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerobic pretreatment of olive oil mill wastewater using Ralstonia eutropha.
    Jalilnejad E; Mogharei A; Vahabzadeh F
    Environ Technol; 2011 Jul; 32(9-10):1085-93. PubMed ID: 21882561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved removal performance and mechanism investigation of papermaking wastewater treatment using manganese enhanced Fenton reaction.
    Wang Y; Wang C; Shi S; Fang S
    Water Sci Technol; 2018 Jun; 77(9-10):2509-2516. PubMed ID: 29893740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters.
    Amaral-Silva N; Martins RC; Castro-Silva S; Quinta-Ferreira RM
    Environ Technol; 2016 Oct; 37(19):2524-35. PubMed ID: 26878594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Olive mill wastewater treatment by a pilot-scale subsurface horizontal flow (SSF-h) constructed wetland.
    Del Bubba M; Checchini L; Pifferi C; Zanieri L; Lepri L
    Ann Chim; 2004 Dec; 94(12):875-87. PubMed ID: 15689024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of molecular weight fractions of COD and phenolic compounds in an integrated treatment of olive oil mill effluents.
    Beccari M; Carucci G; Lanz AM; Majone M; Petrangeli Papini M
    Biodegradation; 2002; 13(6):401-10. PubMed ID: 12713132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation.
    Katsoni A; Mantzavinos D; Diamadopoulos E
    Water Res; 2014 Jun; 57():76-86. PubMed ID: 24704905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of landfill leachate by using electro-Fenton method.
    Atmaca E
    J Hazard Mater; 2009 Apr; 163(1):109-14. PubMed ID: 18657358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.