BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17675065)

  • 1. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart.
    Gupte RS; Vijay V; Marks B; Levine RJ; Sabbah HN; Wolin MS; Recchia FA; Gupte SA
    J Card Fail; 2007 Aug; 13(6):497-506. PubMed ID: 17675065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
    Gupte SA; Levine RJ; Gupte RS; Young ME; Lionetti V; Labinskyy V; Floyd BC; Ojaimi C; Bellomo M; Wolin MS; Recchia FA
    J Mol Cell Cardiol; 2006 Aug; 41(2):340-9. PubMed ID: 16828794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary artery superoxide production and nox isoform expression in human coronary artery disease.
    Guzik TJ; Sadowski J; Guzik B; Jopek A; Kapelak B; Przybylowski P; Wierzbicki K; Korbut R; Harrison DG; Channon KM
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):333-9. PubMed ID: 16293794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH.
    Serpillon S; Floyd BC; Gupte RS; George S; Kozicky M; Neito V; Recchia F; Stanley W; Wolin MS; Gupte SA
    Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H153-62. PubMed ID: 19429815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment.
    Maack C; Kartes T; Kilter H; Schäfers HJ; Nickenig G; Böhm M; Laufs U
    Circulation; 2003 Sep; 108(13):1567-74. PubMed ID: 12963641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle.
    Nediani C; Borchi E; Giordano C; Baruzzo S; Ponziani V; Sebastiani M; Nassi P; Mugelli A; d'Amati G; Cerbai E
    J Mol Cell Cardiol; 2007 Apr; 42(4):826-34. PubMed ID: 17346742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase.
    Ungvari Z; Csiszar A; Huang A; Kaminski PM; Wolin MS; Koller A
    Circulation; 2003 Sep; 108(10):1253-8. PubMed ID: 12874194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction.
    Qin F; Simeone M; Patel R
    Free Radic Biol Med; 2007 Jul; 43(2):271-81. PubMed ID: 17603936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation.
    Kim YM; Guzik TJ; Zhang YH; Zhang MH; Kattach H; Ratnatunga C; Pillai R; Channon KM; Casadei B
    Circ Res; 2005 Sep; 97(7):629-36. PubMed ID: 16123335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells.
    Duerrschmidt N; Stielow C; Muller G; Pagano PJ; Morawietz H
    J Physiol; 2006 Oct; 576(Pt 2):557-67. PubMed ID: 16873416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases.
    Dudley SC; Hoch NE; McCann LA; Honeycutt C; Diamandopoulos L; Fukai T; Harrison DG; Dikalov SI; Langberg J
    Circulation; 2005 Aug; 112(9):1266-73. PubMed ID: 16129811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.
    Guzik TJ; Sadowski J; Kapelak B; Jopek A; Rudzinski P; Pillai R; Korbut R; Channon KM
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1614-20. PubMed ID: 15256399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD(P)H oxidase associated superoxide production in human placenta from normotensive and pre-eclamptic women.
    Raijmakers MT; Peters WH; Steegers EA; Poston L
    Placenta; 2004 Apr; 25 Suppl A():S85-9. PubMed ID: 15033313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH.
    Deng S; Kruger A; Kleschyov AL; Kalinowski L; Daiber A; Wojnowski L
    Free Radic Biol Med; 2007 Feb; 42(4):466-73. PubMed ID: 17275678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD(P)H oxidase-induced oxidative stress in sympathetic ganglia of apolipoprotein E deficient mice.
    Ma X; Zhang HJ; Whiteis CA; Tian X; Davisson RL; Kregel KC; Abboud FM; Chapleau MW
    Auton Neurosci; 2006 Jun; 126-127():285-91. PubMed ID: 16584925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells.
    Yang M; Foster E; Kahn AM
    Am J Hypertens; 2005 Oct; 18(10):1329-34. PubMed ID: 16202857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tyrosine phosphatase, SHP-1, is a negative regulator of endothelial superoxide formation.
    Krötz F; Engelbrecht B; Buerkle MA; Bassermann F; Bridell H; Gloe T; Duyster J; Pohl U; Sohn HY
    J Am Coll Cardiol; 2005 May; 45(10):1700-6. PubMed ID: 15893190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver.
    Gupte RS; Floyd BC; Kozicky M; George S; Ungvari ZI; Neito V; Wolin MS; Gupte SA
    Free Radic Biol Med; 2009 Aug; 47(3):219-28. PubMed ID: 19230846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle.
    Sánchez G; Pedrozo Z; Domenech RJ; Hidalgo C; Donoso P
    J Mol Cell Cardiol; 2005 Dec; 39(6):982-91. PubMed ID: 16242147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.