BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 17675188)

  • 1. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.
    Trapp C; McCullough AK; Epe B
    Mutat Res; 2007 Dec; 625(1-2):155-63. PubMed ID: 17675188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The peroxisome proliferator WY-14,643 promotes hepatocarcinogenesis caused by endogenously generated oxidative DNA base modifications in repair-deficient Csbm/m/Ogg1-/- mice.
    Trapp C; Schwarz M; Epe B
    Cancer Res; 2007 Jun; 67(11):5156-61. PubMed ID: 17545594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice.
    Trapp C; Reite K; Klungland A; Epe B
    Oncogene; 2007 Jun; 26(27):4044-8. PubMed ID: 17213818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage.
    Osterod M; Larsen E; Le Page F; Hengstler JG; Van Der Horst GT; Boiteux S; Klungland A; Epe B
    Oncogene; 2002 Nov; 21(54):8232-9. PubMed ID: 12447686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice.
    de Souza-Pinto NC; Eide L; Hogue BA; Thybo T; Stevnsner T; Seeberg E; Klungland A; Bohr VA
    Cancer Res; 2001 Jul; 61(14):5378-81. PubMed ID: 11454679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional cooperation of Ogg1 and Mutyh in preventing G: C-->T: a transversions in mice.
    Isogawa A
    Fukuoka Igaku Zasshi; 2004 Jan; 95(1):17-30. PubMed ID: 15031996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease.
    Gao D; Wei C; Chen L; Huang J; Yang S; Diehl AM
    Am J Physiol Gastrointest Liver Physiol; 2004 Nov; 287(5):G1070-7. PubMed ID: 15231485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different DNA repair strategies to combat the threat from 8-oxoguanine.
    Russo MT; De Luca G; Degan P; Bignami M
    Mutat Res; 2007 Jan; 614(1-2):69-76. PubMed ID: 16769088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of endogenous oxidative DNA damage in carcinogenesis: what can we learn from repair-deficient mice?
    Epe B
    Biol Chem; 2002; 383(3-4):467-75. PubMed ID: 12033436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B.
    Stevnsner T; Nyaga S; de Souza-Pinto NC; van der Horst GT; Gorgels TG; Hogue BA; Thorslund T; Bohr VA
    Oncogene; 2002 Dec; 21(57):8675-82. PubMed ID: 12483520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context.
    Pastoriza-Gallego M; Armier J; Sarasin A
    Mutagenesis; 2007 Sep; 22(5):343-51. PubMed ID: 17630408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA.
    Stuart JA; Hashiguchi K; Wilson DM; Copeland WC; Souza-Pinto NC; Bohr VA
    Nucleic Acids Res; 2004; 32(7):2181-92. PubMed ID: 15107486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of Mammalian cells.
    Hoffmann S; Spitkovsky D; Radicella JP; Epe B; Wiesner RJ
    Free Radic Biol Med; 2004 Mar; 36(6):765-73. PubMed ID: 14990355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells deficient in oxidative DNA damage repair genes Myh and Ogg1 are sensitive to oxidants with increased G2/M arrest and multinucleation.
    Xie Y; Yang H; Miller JH; Shih DM; Hicks GG; Xie J; Shiu RP
    Carcinogenesis; 2008 Apr; 29(4):722-8. PubMed ID: 18258604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair and mutagenesis at oxidized DNA lesions in the developing brain of wild-type and Ogg1-/- mice.
    Larsen E; Reite K; Nesse G; Gran C; Seeberg E; Klungland A
    Oncogene; 2006 Apr; 25(17):2425-32. PubMed ID: 16369492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?
    Bercht M; Flohr-Beckhaus C; Osterod M; RĂ¼nger TM; Radicella JP; Epe B
    DNA Repair (Amst); 2007 Mar; 6(3):367-73. PubMed ID: 17197252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases.
    Mokkapati SK; Wiederhold L; Hazra TK; Mitra S
    Biochemistry; 2004 Sep; 43(36):11596-604. PubMed ID: 15350146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.