BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17675432)

  • 1. Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress.
    Turner MS; Tan YP; Giffard PM
    Appl Environ Microbiol; 2007 Oct; 73(19):6144-9. PubMed ID: 17675432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis.
    Rezaïki L; Cesselin B; Yamamoto Y; Vido K; van West E; Gaudu P; Gruss A
    Mol Microbiol; 2004 Sep; 53(5):1331-42. PubMed ID: 15387813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CcpA regulation of aerobic and respiration growth in Lactococcus lactis.
    Gaudu P; Lamberet G; Poncet S; Gruss A
    Mol Microbiol; 2003 Oct; 50(1):183-92. PubMed ID: 14507373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis.
    Cesselin B; Ali D; Gratadoux JJ; Gaudu P; Duwat P; Gruss A; El Karoui M
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2274-2281. PubMed ID: 19389779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress in Lactococcus lactis.
    Miyoshi A; Rochat T; Gratadoux JJ; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Dec; 2(4):348-59. PubMed ID: 15011138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363.
    Budin-Verneuil A; Pichereau V; Auffray Y; Ehrlich D; Maguin E
    Proteomics; 2007 Jun; 7(12):2038-46. PubMed ID: 17514678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth.
    Rezaïki L; Lamberet G; Derré A; Gruss A; Gaudu P
    Mol Microbiol; 2008 Mar; 67(5):947-57. PubMed ID: 18194159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis.
    Frees D; Varmanen P; Ingmer H
    Mol Microbiol; 2001 Jul; 41(1):93-103. PubMed ID: 11454203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains.
    Rochat T; Gratadoux JJ; Corthier G; Coqueran B; Nader-Macias ME; Gruss A; Langella P
    Appl Environ Microbiol; 2005 May; 71(5):2782-8. PubMed ID: 15870374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the yggE gene protects Escherichia coli from potassium tellurite-generated oxidative stress.
    Acuña LG; Calderón IL; Elías AO; Castro ME; Vásquez CC
    Arch Microbiol; 2009 May; 191(5):473-6. PubMed ID: 19330318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic di-AMP Oversight of Counter-Ion Osmolyte Pools Impacts Intrinsic Cefuroxime Resistance in Lactococcus lactis.
    Pham HT; Shi W; Xiang Y; Foo SY; Plan MR; Courtin P; Chapot-Chartier MP; Smid EJ; Liang ZX; Marcellin E; Turner MS
    mBio; 2021 Apr; 12(2):. PubMed ID: 33832972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.
    Shi W; Li Y; Gao X; Fu R
    Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of spontaneous mutants of Lactococcus lactis: Involvement of GAPDH and arginine deiminase pathway in H2O2 resistance.
    Rochat T; Boudebbouze S; Gratadoux JJ; Blugeon S; Gaudu P; Langella P; Maguin E
    Proteomics; 2012 Jun; 12(11):1792-805. PubMed ID: 22623348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival.
    Duwat P; Sourice S; Cesselin B; Lamberet G; Vido K; Gaudu P; Le Loir Y; Violet F; Loubière P; Gruss A
    J Bacteriol; 2001 Aug; 183(15):4509-16. PubMed ID: 11443085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.
    Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J
    Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein.
    Smid EJ; Plapp R; Konings WN
    J Bacteriol; 1989 Nov; 171(11):6135-40. PubMed ID: 2509429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis.
    Cesselin B; Henry C; Gruss A; Gloux K; Gaudu P
    Appl Environ Microbiol; 2021 Nov; 87(24):e0107921. PubMed ID: 34613757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tellurite-exposed Escherichia coli exhibits increased intracellular α-ketoglutarate.
    Reinoso CA; Auger C; Appanna VD; Vásquez CC
    Biochem Biophys Res Commun; 2012 May; 421(4):721-6. PubMed ID: 22542626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HtrA is essential for efficient secretion of recombinant proteins by Lactococcus lactis.
    Sriraman K; Jayaraman G
    Appl Environ Microbiol; 2008 Dec; 74(23):7442-6. PubMed ID: 18836019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.