These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 1767588)

  • 1. The use of proline as a nitrogen source causes hypersensitivity to, and allows more economical use of 5FOA in Saccharomyces cerevisiae.
    McCusker JH; Davis RW
    Yeast; 1991; 7(6):607-8. PubMed ID: 1767588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of mutations in PHO85 and PHO4 genes on utilization of proline in Saccharomyces cerevisiae yeasts].
    Popova IuG; Padkina MV; Sambuk EV
    Genetika; 2000 Dec; 36(12):1622-8. PubMed ID: 11190469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast.
    Andréasson C; Neve EP; Ljungdahl PO
    Yeast; 2004 Feb; 21(3):193-9. PubMed ID: 14968425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative orotate transporter of Cryptococcus neoformans, Oat1, is a member of the NCS1/PRT transporter super family and its loss causes attenuation of virulence.
    Toh-E A; Ohkusu M; Shimizu K; Takahashi-Nakaguchi A; Kawamoto S; Ishiwada N; Watanabe A; Kamei K
    Curr Genet; 2017 Aug; 63(4):697-707. PubMed ID: 28011993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
    Boer VM; Tai SL; Vuralhan Z; Arifin Y; Walsh MC; Piper MD; de Winde JH; Pronk JT; Daran JM
    FEMS Yeast Res; 2007 Jun; 7(4):604-20. PubMed ID: 17419774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E
    FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-proline as a nitrogen source increases the susceptibility of Saccharomyces cerevisiae S288c to fluconazole.
    Stella CA; Costanzo R; Burgos HI; Saenz DA; Venerus RD
    Folia Microbiol (Praha); 1998; 43(4):403-5. PubMed ID: 9821294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Media formulations for various two-hybrid systems.
    Saghbini M; Hoekstra D; Gautsch J
    Methods Mol Biol; 2001; 177():15-39. PubMed ID: 11530603
    [No Abstract]   [Full Text] [Related]  

  • 9. Modulation of transcription factor function by an amino acid: activation of Put3p by proline.
    Sellick CA; Reece RJ
    EMBO J; 2003 Oct; 22(19):5147-53. PubMed ID: 14517252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J; Suárez-Rendueles P
    Yeast; 1993 Apr; 9(4):339-49. PubMed ID: 8511964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of the yeast Saccharomyces kluyveri by Saccharomyces cerevisiae-based plasmids.
    Fujimura H
    FEMS Microbiol Lett; 1991 Aug; 66(2):149-52. PubMed ID: 1936943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae.
    Goldstein AL; Pan X; McCusker JH
    Yeast; 1999 Apr; 15(6):507-11. PubMed ID: 10234788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions.
    Bermúdez Moretti M; Correa García S; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):585-90. PubMed ID: 9678893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W.
    Ko N; Nishihama R; Pringle JR
    Yeast; 2008 Feb; 25(2):155-60. PubMed ID: 18186026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on ethanol tolerance of Saccharomyces cerevisiae X330 under very high gravity medium].
    Xue YM; Jiang N
    Sheng Wu Gong Cheng Xue Bao; 2006 May; 22(3):508-13. PubMed ID: 16755936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae.
    Kaneko S; Tanaka T; Noda H; Fukuda H; Akada R; Kondo A
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):783-9. PubMed ID: 19455322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.
    Casalone E; Barberio C; Cappellini L; Polsinelli M
    Res Microbiol; 2005 Mar; 156(2):191-200. PubMed ID: 15748984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of derepression of amino acids transport in Candida.
    Verma RS; Prasad R
    Biochem Int; 1983 Dec; 7(6):707-17. PubMed ID: 6385985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Perinuclear Chromosome Tethers in the Telomeric URA3/5FOA System Reflect Changes to Gene Silencing and not Nucleotide Metabolism.
    Poon BP; Mekhail K
    Front Genet; 2012; 3():144. PubMed ID: 22876257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.