These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17676875)

  • 1. Horse heart myoglobin catalyzes the H2O2-dependent oxidative dehalogenation of chlorophenols to DNA-binding radicals and quinones.
    Osborne RL; Coggins MK; Walla M; Dawson JH
    Biochemistry; 2007 Aug; 46(34):9823-9. PubMed ID: 17676875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates.
    Osborne RL; Coggins MK; Raner GM; Walla M; Dawson JH
    Biochemistry; 2009 May; 48(20):4231-8. PubMed ID: 19371065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional switching of Amphitrite ornata dehaloperoxidase from O2-binding globin to peroxidase enzyme facilitated by halophenol substrate and H2O2.
    Du J; Sono M; Dawson JH
    Biochemistry; 2010 Jul; 49(29):6064-9. PubMed ID: 20565134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caldariomyces fumago chloroperoxidase catalyzes the oxidative dehalogenation of chlorophenols by a mechanism involving two one-electron steps.
    Osborne RL; Coggins MK; Terner J; Dawson JH
    J Am Chem Soc; 2007 Dec; 129(48):14838-9. PubMed ID: 17990879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.
    Sumithran S; Sono M; Raner GM; Dawson JH
    J Inorg Biochem; 2012 Dec; 117():316-21. PubMed ID: 23102773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of phenoxyl radicals in DNA adduction by chlorophenol xenobiotics following peroxidase activation.
    Dai J; Sloat AL; Wright MW; Manderville RA
    Chem Res Toxicol; 2005 Apr; 18(4):771-9. PubMed ID: 15833038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of long-lived radicals on proteins by radical transfer from heme enzymes--a common process?
    Ostdal H; Andersen HJ; Davies MJ
    Arch Biochem Biophys; 1999 Feb; 362(1):105-12. PubMed ID: 9917334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols.
    Osborne RL; Raner GM; Hager LP; Dawson JH
    J Am Chem Soc; 2006 Feb; 128(4):1036-7. PubMed ID: 16433494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the peroxidase oxidation of 2,4,6-trihalophenols: ESR detection of radical intermediates.
    Sturgeon BE; Battenburg BJ; Lyon BJ; Franzen S
    Chem Res Toxicol; 2011 Nov; 24(11):1862-8. PubMed ID: 21950321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphitrite ornata dehaloperoxidase (DHP): investigations of structural factors that influence the mechanism of halophenol dehalogenation using "peroxidase-like" myoglobin mutants and "myoglobin-like" DHP mutants.
    Du J; Huang X; Sun S; Wang C; Lebioda L; Dawson JH
    Biochemistry; 2011 Sep; 50(38):8172-80. PubMed ID: 21800850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular engineering of myoglobin: influence of residue 68 on the rate and the enantioselectivity of oxidation reactions catalyzed by H64D/V68X myoglobin.
    Yang HJ; Matsui T; Ozaki S; Kato S; Ueno T; Phillips GN; Fukuzumi S; Watanabe Y
    Biochemistry; 2003 Sep; 42(34):10174-81. PubMed ID: 12939145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of dehaloperoxidase compound ES and its reactivity with trihalophenols.
    Feducia J; Dumarieh R; Gilvey LB; Smirnova T; Franzen S; Ghiladi RA
    Biochemistry; 2009 Feb; 48(5):995-1005. PubMed ID: 19187035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the distal histidine in H2O2 activation and heme protection in both peroxidase and globin functions.
    Zhao J; de Serrano V; Dumarieh R; Thompson M; Ghiladi RA; Franzen S
    J Phys Chem B; 2012 Oct; 116(40):12065-77. PubMed ID: 22928870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of the ferric states of Amphitrite ornata dehaloperoxidase and Notomastus lobatus chloroperoxidase: His-ligated peroxidases with globin-like proximal and distal properties.
    Osborne RL; Sumithran S; Coggins MK; Chen YP; Lincoln DE; Dawson JH
    J Inorg Biochem; 2006 May; 100(5-6):1100-8. PubMed ID: 16603247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regio- and stereo-chemical oxidation of linoleic acid by human myoglobin and hydrogen peroxide: Tyr(103) affects rate and product distribution.
    Rayner BS; Stocker R; Lay PA; Witting PK
    Biochem J; 2004 Jul; 381(Pt 2):365-72. PubMed ID: 15035657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of protein radical reactions of ferrylmyoglobin by the water-soluble analog of vitamin E, Trolox C.
    Giulivi C; Cadenas E
    Arch Biochem Biophys; 1993 May; 303(1):152-8. PubMed ID: 8489259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced lipid oxidation by oxidatively modified myoglobin: role of protein-bound heme.
    Vuletich JL; Osawa Y; Aviram M
    Biochem Biophys Res Commun; 2000 Mar; 269(3):647-51. PubMed ID: 10720470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.