BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 17676893)

  • 1. NR transfer reactivity of azo-compound I of P450. How does the nitrogen substituent tune the reactivity of the species toward C-H and C=C activation?
    Moreau Y; Chen H; Derat E; Hirao H; Bolm C; Shaik S
    J Phys Chem B; 2007 Aug; 111(34):10288-99. PubMed ID: 17676893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results.
    Neuvonen H; Neuvonen K; Fülöp F
    J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the active species of cytochrome P450 during camphor hydroxylation? QM/MM studies of different electronic states of compound I and of reduced and oxidized iron-oxo intermediates.
    Altun A; Shaik S; Thiel W
    J Am Chem Soc; 2007 Jul; 129(29):8978-87. PubMed ID: 17595079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insight into the electronic structure of iron(IV)-oxo porphyrin compound I. A quantum chemical topological analysis.
    Viciano I; Berski S; Martí S; Andrés J
    J Comput Chem; 2013 Apr; 34(9):780-9. PubMed ID: 23233452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the identity and reactivity patterns of the "second oxidant" of the T252A mutant of cytochrome P450cam in the oxidation of 5-methylenenylcamphor.
    Hirao H; Kumar D; Shaik S
    J Inorg Biochem; 2006 Dec; 100(12):2054-68. PubMed ID: 17084458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of N-demethylation of substituted N,N-dimethylanilines by cytochrome P450: the mechanistic significance of kinetic isotope effect profiles.
    Wang Y; Kumar D; Yang C; Han K; Shaik S
    J Phys Chem B; 2007 Jul; 111(26):7700-10. PubMed ID: 17559261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D; de Visser SP; Sharma PK; Hirao H; Shaik S
    Biochemistry; 2005 Jun; 44(22):8148-58. PubMed ID: 15924434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic N-N coupling of aryl azides to yield azoarenes via trigonal bipyramid iron-nitrene intermediates.
    Mankad NP; Müller P; Peters JC
    J Am Chem Soc; 2010 Mar; 132(12):4083-5. PubMed ID: 20199026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila.
    Hsueh CC; Chen BY; Yen CY
    J Hazard Mater; 2009 Aug; 167(1-3):995-1001. PubMed ID: 19237244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two states and two more in the mechanisms of hydroxylation and epoxidation by cytochrome P450.
    Hirao H; Kumar D; Thiel W; Shaik S
    J Am Chem Soc; 2005 Sep; 127(37):13007-18. PubMed ID: 16159296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for the design of organic aziridination reagents and catalysts: transition structures for alkene aziridinations by NH transfer.
    Washington I; Houk KN; Armstrong A
    J Org Chem; 2003 Aug; 68(17):6497-501. PubMed ID: 12919009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characterization of cytochrome P450 Compound I.
    Jung C; de Vries S; Schünemann V
    Arch Biochem Biophys; 2011 Mar; 507(1):44-55. PubMed ID: 21195047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of N-sulfinylamines and isocyanates: a computational comparison.
    Ivanova EV; Muchall HM
    J Phys Chem A; 2007 Oct; 111(42):10824-33. PubMed ID: 17915846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.