These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 17676894)
41. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Bertero MG; Rothery RA; Palak M; Hou C; Lim D; Blasco F; Weiner JH; Strynadka NC Nat Struct Biol; 2003 Sep; 10(9):681-7. PubMed ID: 12910261 [TBL] [Abstract][Full Text] [Related]
42. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism. Welford RW; Lam A; Mirica LM; Klinman JP Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423 [TBL] [Abstract][Full Text] [Related]
43. Binding and reduction of sulfite by cytochrome c nitrite reductase. Lukat P; Rudolf M; Stach P; Messerschmidt A; Kroneck PM; Simon J; Einsle O Biochemistry; 2008 Feb; 47(7):2080-6. PubMed ID: 18201106 [TBL] [Abstract][Full Text] [Related]
44. Kinetic and titration methods for determination of active site contents of enzyme and catalytic antibody preparations. Brocklehurst K; Resmini M; Topham CM Methods; 2001 Jun; 24(2):153-67. PubMed ID: 11384190 [TBL] [Abstract][Full Text] [Related]
45. Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues. Ray SS; Sengupta R; Tiso M; Haque MM; Sahoo R; Konas DW; Aulak K; Regulski M; Tully T; Stuehr DJ; Ghosh S Biochemistry; 2007 Oct; 46(42):11865-73. PubMed ID: 17900149 [TBL] [Abstract][Full Text] [Related]
46. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities. Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703 [TBL] [Abstract][Full Text] [Related]
47. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Anderson LJ; Richardson DJ; Butt JN Biochemistry; 2001 Sep; 40(38):11294-307. PubMed ID: 11560477 [TBL] [Abstract][Full Text] [Related]
48. Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa. Kalimuthu P; Ringel P; Kruse T; Bernhardt PV Biochim Biophys Acta; 2016 Sep; 1857(9):1506-1513. PubMed ID: 27060250 [TBL] [Abstract][Full Text] [Related]
49. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025). Hartsock A; Shapleigh JP J Bacteriol; 2011 Dec; 193(23):6483-9. PubMed ID: 21949073 [TBL] [Abstract][Full Text] [Related]
50. Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase. Clarke TA; Kemp GL; Van Wonderen JH; Doyle RM; Cole JA; Tovell N; Cheesman MR; Butt JN; Richardson DJ; Hemmings AM Biochemistry; 2008 Mar; 47(12):3789-99. PubMed ID: 18311941 [TBL] [Abstract][Full Text] [Related]
51. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Page CC; Moser CC; Chen X; Dutton PL Nature; 1999 Nov; 402(6757):47-52. PubMed ID: 10573417 [TBL] [Abstract][Full Text] [Related]
53. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878 [TBL] [Abstract][Full Text] [Related]
54. Substrate-dependent modulation of the enzymatic catalytic activity: reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617. Marangon J; Paes de Sousa PM; Moura I; Brondino CD; Moura JJ; González PJ Biochim Biophys Acta; 2012 Jul; 1817(7):1072-82. PubMed ID: 22561116 [TBL] [Abstract][Full Text] [Related]
55. Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Jiang W; Xie J; Nørgaard H; Bollinger JM; Krebs C Biochemistry; 2008 Apr; 47(15):4477-83. PubMed ID: 18358006 [TBL] [Abstract][Full Text] [Related]
56. The kinetic basis of a general method for the investigation of active site content of enzymes and catalytic antibodies: first-order behaviour under single-turnover and cycling conditions. Topham CM; Gul S; Resmini M; Sonkaria S; Gallacher G; Brocklehurst K J Theor Biol; 2000 May; 204(2):239-56. PubMed ID: 10887904 [TBL] [Abstract][Full Text] [Related]
57. Crystal structure of a bacterial signal Peptide peptidase. Kim AC; Oliver DC; Paetzel M J Mol Biol; 2008 Feb; 376(2):352-66. PubMed ID: 18164727 [TBL] [Abstract][Full Text] [Related]
58. Harnessing the mechanism of glutathione reductase for synthesis of active site bound metallic nanoparticles and electrical connection to electrodes. Scott D; Toney M; Muzikár M J Am Chem Soc; 2008 Jan; 130(3):865-74. PubMed ID: 18166048 [TBL] [Abstract][Full Text] [Related]
59. Conformation of pseudoazurin in the 152 kDa electron transfer complex with nitrite reductase determined by paramagnetic NMR. Vlasie MD; Fernández-Busnadiego R; Prudêncio M; Ubbink M J Mol Biol; 2008 Feb; 375(5):1405-15. PubMed ID: 18083191 [TBL] [Abstract][Full Text] [Related]
60. Reversible biological Birch reduction at an extremely low redox potential. Kung JW; Baumann S; von Bergen M; Müller M; Hagedoorn PL; Hagen WR; Boll M J Am Chem Soc; 2010 Jul; 132(28):9850-6. PubMed ID: 20578740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]