These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 17676923)

  • 1. Charge-remote fragmentation of odd-electron peptide ions.
    Laskin J; Yang Z; Lam C; Chu IK
    Anal Chem; 2007 Sep; 79(17):6607-14. PubMed ID: 17676923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of polypeptide ions with electrons in the gas phase.
    Zubarev RA
    Mass Spectrom Rev; 2003; 22(1):57-77. PubMed ID: 12768604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions.
    Yoo HJ; Wang N; Zhuang S; Song H; Håkansson K
    J Am Chem Soc; 2011 Oct; 133(42):16790-3. PubMed ID: 21942568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides.
    Sierakowski J; Amunugama M; Roberts KD; Reid GE
    Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C alpha-C backbone fragmentation dominates in electron detachment dissociation of gas-phase polypeptide polyanions.
    Kjeldsen F; Silivra OA; Ivonin IA; Haselmann KF; Gorshkov M; Zubarev RA
    Chemistry; 2005 Mar; 11(6):1803-12. PubMed ID: 15672435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of peptide ions by fast atom bombardment in a quadrupole ion trap.
    Misharin AS; Silivra OA; Kjeldsen F; Zubarev RA
    Rapid Commun Mass Spectrom; 2005; 19(15):2163-71. PubMed ID: 15988733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes.
    Chu IK; Laskin J
    Eur J Mass Spectrom (Chichester); 2011; 17(6):543-56. PubMed ID: 22274945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-phase peptide sequencing by TEMPO-mediated radical generation.
    Lee M; Kang M; Moon B; Oh HB
    Analyst; 2009 Aug; 134(8):1706-12. PubMed ID: 20448941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes.
    Shin JW; Lee YH; Hwang S; Lee SW
    J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation of singly protonated peptides via interaction with metastable rare gas atoms.
    Berkout VD
    Anal Chem; 2009 Jan; 81(2):725-31. PubMed ID: 19099409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron ionization dissociation of singly and multiply charged peptides.
    Fung YM; Adams CM; Zubarev RA
    J Am Chem Soc; 2009 Jul; 131(29):9977-85. PubMed ID: 19621955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals.
    Sun Q; Nelson H; Ly T; Stoltz BM; Julian RR
    J Proteome Res; 2009 Feb; 8(2):958-66. PubMed ID: 19113886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical-driven peptide backbone dissociation tandem mass spectrometry.
    Oh HB; Moon B
    Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution.
    Zehl M; Rand KD; Jensen ON; Jørgensen TJ
    J Am Chem Soc; 2008 Dec; 130(51):17453-9. PubMed ID: 19035774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaving group effects on the selectivity of the gas-phase fragmentation reactions of side chain fixed-charge-containing peptide ions.
    Roberts KD; Reid GE
    J Mass Spectrom; 2007 Feb; 42(2):187-98. PubMed ID: 17154347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens.
    Rand KD; Adams CM; Zubarev RA; Jørgensen TJ
    J Am Chem Soc; 2008 Jan; 130(4):1341-9. PubMed ID: 18171065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations.
    Xia Y; Gunawardena HP; Erickson DE; McLuckey SA
    J Am Chem Soc; 2007 Oct; 129(40):12232-43. PubMed ID: 17880074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics and dynamics of electron transfer and proton transfer in dissociation of metal(III)(salen)-peptide complexes in the gas phase.
    Laskin J; Yang Z; Chu IK
    J Am Chem Soc; 2008 Mar; 130(10):3218-30. PubMed ID: 18266367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions.
    Tsybin YO; He H; Emmett MR; Hendrickson CL; Marshall AG
    Anal Chem; 2007 Oct; 79(20):7596-602. PubMed ID: 17874851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.