BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17676949)

  • 21. Directional sensing of deformed cells under faint gradients.
    Baba A; Hiraiwa T; Shibata T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):060901. PubMed ID: 23367886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency and orientation of pseudopod formation of Dictyostelium discoideum amebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism.
    Varnum-Finney BJ; Voss E; Soll DR
    Cell Motil Cytoskeleton; 1987; 8(1):18-26. PubMed ID: 2820592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenomenological approach to eukaryotic chemotactic efficiency.
    Hu B; Fuller D; Loomis WF; Levine H; Rappel WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031906. PubMed ID: 20365769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatiotemporal regulation of Ras activity provides directional sensing.
    Zhang S; Charest PG; Firtel RA
    Curr Biol; 2008 Oct; 18(20):1587-1593. PubMed ID: 18948008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The signaling mechanisms underlying cell polarity and chemotaxis.
    Wang F
    Cold Spring Harb Perspect Biol; 2009 Oct; 1(4):a002980. PubMed ID: 20066099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dictyostelium chemotactic response to spatial and temporal gradients. Theories of the limits of chemotactic sensitivity and of pseudochemotaxis.
    Futrelle RP
    J Cell Biochem; 1982; 18(2):197-212. PubMed ID: 7068779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways.
    Narang A
    J Theor Biol; 2006 Jun; 240(4):538-53. PubMed ID: 16343548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis.
    Wessels D; Lusche DF; Kuhl S; Heid P; Soll DR
    J Cell Sci; 2007 Aug; 120(Pt 15):2517-31. PubMed ID: 17623773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Directional sensing in eukaryotic chemotaxis: a balanced inactivation model.
    Levine H; Kessler DA; Rappel WJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9761-6. PubMed ID: 16782813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection.
    van Haastert PJ; Postma M
    Biophys J; 2007 Sep; 93(5):1787-96. PubMed ID: 17513372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematics of experimentally generated chemoattractant gradients.
    Postma M; van Haastert PJ
    Methods Mol Biol; 2009; 571():473-88. PubMed ID: 19763986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms.
    Dolak Y; Schmeiser C
    J Math Biol; 2005 Dec; 51(6):595-615. PubMed ID: 15940538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High fidelity information processing in folic acid chemotaxis of Dictyostelium amoebae.
    Segota I; Mong S; Neidich E; Rachakonda A; Lussenhop CJ; Franck C
    J R Soc Interface; 2013 Nov; 10(88):20130606. PubMed ID: 24026470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GPCR-controlled chemotaxis in Dictyostelium discoideum.
    Jin T
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(6):717-27. PubMed ID: 21381217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3'-phosphoinositides regulate the coordination of speed and accuracy during chemotaxis.
    Gruver JS; Wikswo JP; Chung CY
    Biophys J; 2008 Oct; 95(8):4057-67. PubMed ID: 18676656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Open access microfluidic device for the study of cell migration during chemotaxis.
    Jowhar D; Wright G; Samson PC; Wikswo JP; Janetopoulos C
    Integr Biol (Camb); 2010 Nov; 2(11-12):648-58. PubMed ID: 20949221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in ameboid chemotaxis.
    Varnum-Finney B; Edwards KB; Voss E; Soll DR
    Cell Motil Cytoskeleton; 1987; 8(1):7-17. PubMed ID: 2820593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. External and internal constraints on eukaryotic chemotaxis.
    Fuller D; Chen W; Adler M; Groisman A; Levine H; Rappel WJ; Loomis WF
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9656-9. PubMed ID: 20457897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrophil migration under spatially-varying chemoattractant gradient profiles.
    Halilovic I; Wu J; Alexander M; Lin F
    Biomed Microdevices; 2015; 17(3):9963. PubMed ID: 25998723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergent Collective Chemotaxis without Single-Cell Gradient Sensing.
    Camley BA; Zimmermann J; Levine H; Rappel WJ
    Phys Rev Lett; 2016 Mar; 116(9):098101. PubMed ID: 26991203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.