These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17677021)

  • 1. Speed of pulled fronts with a cutoff.
    Benguria RD; Depassier MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051106. PubMed ID: 17677021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly pushed nature of "pulled" fronts with a cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057202. PubMed ID: 12059760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational principles and the shift in the front speed due to a cutoff.
    Méndez V; Campos D; Zemskov EP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056113. PubMed ID: 16383694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuating pulled fronts: The origin and the effects of a finite particle cutoff.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036206. PubMed ID: 12366223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fronts with a growth cutoff but with speed higher than the linear spreading speed.
    Panja D; van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):015206. PubMed ID: 12241416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifurcation delay and front propagation in the real Ginzburg-Landau equation on a time-dependent domain.
    Tsubota T; Liu C; Foster B; Knobloch E
    Phys Rev E; 2024 Apr; 109(4-1):044210. PubMed ID: 38755931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of environmental fluctuations on invasion fronts.
    Méndez V; Llopis I; Campos D; Horsthemke W
    J Theor Biol; 2011 Jul; 281(1):31-8. PubMed ID: 21549716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal speed of fronts of reaction-convection-diffusion equations.
    Benguria RD; Depassier MC; Méndez V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031106. PubMed ID: 15089264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speed selection mechanism for propagating fronts in reaction-diffusion systems with multiple fields.
    Theodorakis S; Leontidis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026122. PubMed ID: 11863602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed of fast and slow rupture fronts along frictional interfaces.
    Trømborg JK; Sveinsson HA; Thøgersen K; Scheibert J; Malthe-Sørenssen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012408. PubMed ID: 26274187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity and diffusion coefficient of A + A <--> A reaction fronts in one dimension.
    Kumar N; Tripathy G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011109. PubMed ID: 16907062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front propagation in an A→2A, A→3A process in one dimension: velocity, diffusion, and velocity correlations.
    Kumar N; Tripathy G; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061152. PubMed ID: 21797347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources.
    Tang FD; Higgins AJ; Goroshin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036311. PubMed ID: 22587184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Front propagation in a laminar cellular flow: shapes, velocities, and least time criterion.
    Pocheau A; Harambat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036304. PubMed ID: 18517508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations.
    Rocco A; Ramírez-Piscina L; Casademunt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056116. PubMed ID: 12059656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convective chemical fronts in a Poiseuille flow.
    Vasquez DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056308. PubMed ID: 18233757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation-induced instabilities in front propagation up a comoving reaction gradient in two dimensions.
    Wylie CS; Levine H; Kessler DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016119. PubMed ID: 16907163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic or chaotic states.
    Storm C; Spruijt W; Ebert U; van Saarloos W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):R6063-6. PubMed ID: 11088351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation.
    Benguria RD; Depassier MC; Haikala V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051101. PubMed ID: 18233617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.