These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 17677118)
1. Cyclical interactions with alliance-specific heterogeneous invasion rates. Perc M; Szolnoki A; Szabó G Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):052102. PubMed ID: 17677118 [TBL] [Abstract][Full Text] [Related]
2. Segregation process and phase transition in cyclic predator-prey models with an even number of species. Szabó G; Szolnoki A; Sznaider GA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051921. PubMed ID: 18233701 [TBL] [Abstract][Full Text] [Related]
3. Diverging fluctuations in a spatial five-species cyclic dominance game. Vukov J; Szolnoki A; Szabó G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022123. PubMed ID: 24032791 [TBL] [Abstract][Full Text] [Related]
4. Spatial rock-paper-scissors models with inhomogeneous reaction rates. He Q; Mobilia M; Täuber UC Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051909. PubMed ID: 21230502 [TBL] [Abstract][Full Text] [Related]
5. Reentrant phase transition in a predator-prey model. Han SG; Park SC; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066114. PubMed ID: 19658571 [TBL] [Abstract][Full Text] [Related]
6. Self-organizing patterns maintained by competing associations in a six-species predator-prey model. Szabó G; Szolnoki A; Borsos I Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041919. PubMed ID: 18517668 [TBL] [Abstract][Full Text] [Related]
7. Spreading of families in cyclic predator-prey models. Ravasz M; Szabó G; Szolnoki A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):012901. PubMed ID: 15324103 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary dynamics of prey exploitation in a metapopulation of predators. Pels B; de Roos AM; Sabelis MW Am Nat; 2002 Feb; 159(2):172-89. PubMed ID: 18707412 [TBL] [Abstract][Full Text] [Related]
9. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs. Krivan V Am Nat; 2007 Nov; 170(5):771-82. PubMed ID: 17926298 [TBL] [Abstract][Full Text] [Related]
10. Facilitation of intraguild prey by its intraguild predator in a three-species Lotka-Volterra model. Shchekinova EY; Löder MG; Boersma M; Wiltshire KH Theor Popul Biol; 2014 Mar; 92():55-61. PubMed ID: 24325813 [TBL] [Abstract][Full Text] [Related]
11. Instability of defensive alliances in the predator-prey model on complex networks. Kim BJ; Liu J; Um J; Lee SI Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041906. PubMed ID: 16383419 [TBL] [Abstract][Full Text] [Related]
12. Phase transition and selection in a four-species cyclic predator-prey model. Szabó G; Arial Sznaider G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031911. PubMed ID: 15089326 [TBL] [Abstract][Full Text] [Related]
13. Stochastic analysis of a pulse-type prey-predator model. Wu Y; Zhu WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041911. PubMed ID: 18517660 [TBL] [Abstract][Full Text] [Related]
14. Local spatial structure and predator-prey dynamics: counterintuitive effects of prey enrichment. Murrell DJ Am Nat; 2005 Sep; 166(3):354-67. PubMed ID: 16224690 [TBL] [Abstract][Full Text] [Related]
15. Effects of Predator-prey Body Size Ratios on the Stability of Food Chains. Jonsson T; Ebenman B J Theor Biol; 1998 Aug; 193(3):407-417. PubMed ID: 9735269 [TBL] [Abstract][Full Text] [Related]
16. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems. Vucetich JA; Hebblewhite M; Smith DW; Peterson RO J Anim Ecol; 2011 Nov; 80(6):1236-45. PubMed ID: 21569029 [TBL] [Abstract][Full Text] [Related]
17. The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. Milgram A J Theor Biol; 2011 Feb; 271(1):157-8. PubMed ID: 21145326 [TBL] [Abstract][Full Text] [Related]
18. Extinction in the Lotka-Volterra model. Parker M; Kamenev A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021129. PubMed ID: 19792099 [TBL] [Abstract][Full Text] [Related]
19. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays. Meng X; Chen L J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297 [TBL] [Abstract][Full Text] [Related]
20. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Wang Y; Deangelis DL Math Biosci Eng; 2012 Apr; 9(2):431-44. PubMed ID: 22901072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]