These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 17677163)
1. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory. Fried E; Gurtin ME Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056306. PubMed ID: 17677163 [TBL] [Abstract][Full Text] [Related]
2. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations. Chen X; Fried E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536 [TBL] [Abstract][Full Text] [Related]
3. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential. Pietarila Graham J; Holm DD; Mininni PD; Pouquet A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759 [TBL] [Abstract][Full Text] [Related]
4. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations. Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292 [TBL] [Abstract][Full Text] [Related]
5. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Sengupta TK; Bhaumik S; Bhumkar YG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318 [TBL] [Abstract][Full Text] [Related]
6. Turbulence: large-scale sweeping and the emergence of small-scale Kolmogorov spectra. Dekker H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026302. PubMed ID: 21929085 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional poor man's Navier-Stokes equation: a discrete dynamical system exhibiting k(-5/3) inertial subrange energy scaling. McDonough JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):065302. PubMed ID: 19658551 [TBL] [Abstract][Full Text] [Related]
8. Scaling properties of particle density fields formed in simulated turbulent flows. Hogan RC; Cuzzi JN; Dobrovolskis AR Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949 [TBL] [Abstract][Full Text] [Related]
9. Self-consistent chaotic transport in fluids and plasmas. Del-Castillo-Negrete D Chaos; 2000 Mar; 10(1):75-88. PubMed ID: 12779364 [TBL] [Abstract][Full Text] [Related]
10. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics. Suryanarayanan S; Narasimha R; Hari Dass ND Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013009. PubMed ID: 24580322 [TBL] [Abstract][Full Text] [Related]
12. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations. Ida M; Taniguchi N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036705. PubMed ID: 14524924 [TBL] [Abstract][Full Text] [Related]
13. Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation. Pattison MJ; Premnath KN; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026704. PubMed ID: 19391871 [TBL] [Abstract][Full Text] [Related]
14. Synchronization of chaos in fully developed turbulence. Lalescu CC; Meneveau C; Eyink GL Phys Rev Lett; 2013 Feb; 110(8):084102. PubMed ID: 23473150 [TBL] [Abstract][Full Text] [Related]
15. Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields. Mizuta A; Matsumoto T; Toh S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053009. PubMed ID: 24329353 [TBL] [Abstract][Full Text] [Related]
16. Turbulent wake solutions of the Prandtl alpha equations. Putkaradze V; Weidman P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036304. PubMed ID: 12689162 [TBL] [Abstract][Full Text] [Related]
17. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities. Aringazin AK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627 [TBL] [Abstract][Full Text] [Related]
18. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling. Ohkitani K Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662 [TBL] [Abstract][Full Text] [Related]
19. Molecular-Level Simulations of Turbulence and Its Decay. Gallis MA; Bitter NP; Koehler TP; Torczynski JR; Plimpton SJ; Papadakis G Phys Rev Lett; 2017 Feb; 118(6):064501. PubMed ID: 28234505 [TBL] [Abstract][Full Text] [Related]
20. Maximum Entropy Method for Solving the Turbulent Channel Flow Problem. Lee TW Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]