These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17677165)

  • 1. Self-organization of bouncing oil drops: two-dimensional lattices and spinning clusters.
    Lieber SI; Hendershott MC; Pattanaporkratana A; Maclennan JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056308. PubMed ID: 17677165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exotic orbits of two interacting wave sources.
    Protière S; Bohn S; Couder Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036204. PubMed ID: 18851118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to focus issue on hydrodynamic quantum analogs.
    Bush JWM; Couder Y; Gilet T; Milewski PA; Nachbin A
    Chaos; 2018 Sep; 28(9):096001. PubMed ID: 30278632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex-mediated bouncing drops on an oscillating liquid.
    Chu HY; Fei HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063011. PubMed ID: 25019883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical self-organization of an assembly of interacting walking drops in a confining potential.
    Hélias A; Labousse M
    Eur Phys J E Soft Matter; 2023 Apr; 46(4):29. PubMed ID: 37058179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bouncing of polymeric droplets on liquid interfaces.
    Gier S; Dorbolo S; Terwagne D; Vandewalle N; Wagner C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066314. PubMed ID: 23368045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetry-Breaking Drop Bouncing on Superhydrophobic Surfaces with Continuously Changing Curvatures.
    Choi W; Yun S
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From bouncing to floating: noncoalescence of drops on a fluid bath.
    Couder Y; Fort E; Gautier CH; Boudaoud A
    Phys Rev Lett; 2005 May; 94(17):177801. PubMed ID: 15904334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath.
    Gauthier A; Diddens C; Proville R; Lohse D; van der Meer D
    Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1174-1179. PubMed ID: 30617076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective vibrations of a hydrodynamic active lattice.
    Thomson SJ; Durey M; Rosales RR
    Proc Math Phys Eng Sci; 2020 Jul; 476(2239):20200155. PubMed ID: 32831612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.
    Chen S; Bertola V
    Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bouncing jet: a Newtonian liquid rebounding off a free surface.
    Thrasher M; Jung S; Pang YK; Chuu CP; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056319. PubMed ID: 18233768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate.
    Pham JT; Paven M; Wooh S; Kajiya T; Butt HJ; Vollmer D
    Nat Commun; 2017 Oct; 8(1):905. PubMed ID: 29030546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optochemical organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices.
    Kasala K; Saravanamuttu K
    Langmuir; 2013 Jan; 29(4):1221-7. PubMed ID: 23252718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal scaling functions for bond percolation on planar-random and square lattices with multiple percolating clusters.
    Hsu HP; Lin SC; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016127. PubMed ID: 11461351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry breaking in linearly coupled dynamical lattices.
    Herring G; Kevrekidis PG; Malomed BA; Carretero-González R; Frantzeskakis DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066606. PubMed ID: 18233936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agglomerative percolation on bipartite networks: nonuniversal behavior due to spontaneous symmetry breaking at the percolation threshold.
    Lau HW; Paczuski M; Grassberger P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011118. PubMed ID: 23005379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin models in three dimensions: Adaptive lattice spacing.
    Hasenbusch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033304. PubMed ID: 25871243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.