These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 17677170)
1. Effect of a vertically flowing water jet underneath a granular bed. Zoueshtiagh F; Merlen A Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056313. PubMed ID: 17677170 [TBL] [Abstract][Full Text] [Related]
2. Localized fluidization in a granular medium. Philippe P; Badiane M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042206. PubMed ID: 23679406 [TBL] [Abstract][Full Text] [Related]
3. Localized fluidization in granular materials: Theoretical and numerical study. Montellà EP; Toraldo M; Chareyre B; Sibille L Phys Rev E; 2016 Nov; 94(5-1):052905. PubMed ID: 27967124 [TBL] [Abstract][Full Text] [Related]
4. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality. Yoshimura Y; Yagisawa Y; Okumura K Sci Rep; 2016 Dec; 6():38457. PubMed ID: 27941823 [TBL] [Abstract][Full Text] [Related]
5. Stick-slip dynamics of a granular layer under shear. Volfson D; Tsimring LS; Aranson IS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031302. PubMed ID: 15089281 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods. Ngoma J; Philippe P; Bonelli S; Radjaï F; Delenne JY Phys Rev E; 2018 May; 97(5-1):052902. PubMed ID: 29906944 [TBL] [Abstract][Full Text] [Related]
7. Effect of finite container size on granular jet formation. von Kann S; Joubaud S; Caballero-Robledo GA; Lohse D; van der Meer D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041306. PubMed ID: 20481716 [TBL] [Abstract][Full Text] [Related]
8. Birth and growth of a granular jet. Royer JR; Corwin EI; Conyers B; Flior A; Rivers ML; Eng PJ; Jaeger HM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011305. PubMed ID: 18763946 [TBL] [Abstract][Full Text] [Related]
9. Bubbles trapped in a fluidized bed: Trajectories and contact area. Poryles R; Vidal V; Varas G Phys Rev E; 2016 Mar; 93(3):032904. PubMed ID: 27078433 [TBL] [Abstract][Full Text] [Related]
10. Microscopic and macroscopic aspects of stick-slip motion in granular shear. Cain RG; Page NW; Biggs S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016413. PubMed ID: 11461416 [TBL] [Abstract][Full Text] [Related]
11. Application of k- and q-space encoding NMR techniques on granular media in a 3D model fluidized bed reactor. Harms S; Stapf S; Blümich B J Magn Reson; 2006 Feb; 178(2):308-17. PubMed ID: 16269261 [TBL] [Abstract][Full Text] [Related]
12. Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime. Castellanos A; Valverde JM; Quintanilla MA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061301. PubMed ID: 12188710 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional simulations of a vertically vibrated granular bed including interstitial air. Idler V; Sánchez I; Paredes R; Gutiérrez G; Reyes LI; Botet R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051301. PubMed ID: 19518443 [TBL] [Abstract][Full Text] [Related]
15. Numerical measurement of flow fluctuations to quantify cohesion in granular materials. Preud'homme N; Lumay G; Vandewalle N; Opsomer E Phys Rev E; 2021 Dec; 104(6-1):064901. PubMed ID: 35030871 [TBL] [Abstract][Full Text] [Related]
16. Parameters and scalings for dry and immersed granular flowing layers in rotating tumblers. Pignatel F; Asselin C; Krieger L; Christov IC; Ottino JM; Lueptow RM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011304. PubMed ID: 23005408 [TBL] [Abstract][Full Text] [Related]
17. River-bed armouring as a granular segregation phenomenon. Ferdowsi B; Ortiz CP; Houssais M; Jerolmack DJ Nat Commun; 2017 Nov; 8(1):1363. PubMed ID: 29118422 [TBL] [Abstract][Full Text] [Related]
18. Hydrodynamic Behavior of Particles in a 3D Integral Multi-Jet Spout-Fluidized Bed. Yang C; Wu F; Hui Z; Ma X ACS Omega; 2020 Dec; 5(48):30871-30880. PubMed ID: 33324796 [TBL] [Abstract][Full Text] [Related]
19. Gas-induced fluidization of mobile liquid-saturated grains. Ramos G; Varas G; Géminard JC; Vidal V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062210. PubMed ID: 26764685 [TBL] [Abstract][Full Text] [Related]
20. Utilisation of controlled pore topology for the separation of bioparticles in a mixed-glass beads column. Mota M; Teixeira J; Yelshin A; Cortez S J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Oct; 843(1):63-72. PubMed ID: 16815763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]