These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 17677223)
1. Critical behavior of the majority voter model is independent of transition rates. Kwak W; Yang JS; Sohn JI; Kim IM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061110. PubMed ID: 17677223 [TBL] [Abstract][Full Text] [Related]
2. Existence of an upper critical dimension in the majority voter model. Yang JS; Kim IM; Kwak W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051122. PubMed ID: 18643041 [TBL] [Abstract][Full Text] [Related]
3. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination. Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077 [TBL] [Abstract][Full Text] [Related]
4. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM; Rikvold PA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [TBL] [Abstract][Full Text] [Related]
5. Quantum critical behavior of the quantum Ising model on fractal lattices. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581 [TBL] [Abstract][Full Text] [Related]
6. Phase transition in the majority-vote model on the Archimedean lattices. Yu U Phys Rev E; 2017 Jan; 95(1-1):012101. PubMed ID: 28208396 [TBL] [Abstract][Full Text] [Related]
7. Critical phenomena of the majority voter model in a three-dimensional cubic lattice. Acuña-Lara AL; Sastre F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041123. PubMed ID: 23214545 [TBL] [Abstract][Full Text] [Related]
8. Dynamical percolation transition in the two-dimensional ANNNI model. Chandra AK J Phys Condens Matter; 2013 Apr; 25(13):136002. PubMed ID: 23454866 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium phase transition in an Ising model without detailed balance. Kumar M; Dasgupta C Phys Rev E; 2020 Nov; 102(5-1):052111. PubMed ID: 33327127 [TBL] [Abstract][Full Text] [Related]
10. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
11. Phase transition in a coevolving network of conformist and contrarian voters. Yi SD; Baek SK; Zhu CP; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012806. PubMed ID: 23410387 [TBL] [Abstract][Full Text] [Related]
12. Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model. Crokidakis N; de Oliveira PM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041147. PubMed ID: 22680457 [TBL] [Abstract][Full Text] [Related]
13. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes. Sampaio Filho CI; Dos Santos TB; Moreira AA; Moreira FG; Andrade JS Phys Rev E; 2016 May; 93(5):052101. PubMed ID: 27300824 [TBL] [Abstract][Full Text] [Related]
14. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
15. Dynamical percolation transition in the Ising model studied using a pulsed magnetic field. Biswas S; Kundu A; Chandra AK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021109. PubMed ID: 21405820 [TBL] [Abstract][Full Text] [Related]
16. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related]
17. Universality of a two-dimensional Ising ferromagnetic fluid near the second-order magnetic phase transition. Korneta W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041109. PubMed ID: 11690012 [TBL] [Abstract][Full Text] [Related]
18. Comment on "Phase transition in a one-dimensional Ising ferromagnet at zero temperature using Glauber dynamics with a synchronous updating mode". Yi IG; Kim BJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):033101. PubMed ID: 21517548 [TBL] [Abstract][Full Text] [Related]
19. Percolation of randomly distributed growing clusters: finite-size scaling and critical exponents for the square lattice. Tsakiris N; Maragakis M; Kosmidis K; Argyrakis P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041108. PubMed ID: 21230239 [TBL] [Abstract][Full Text] [Related]