These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 17677241)
21. Generalized self-consistent reservoir model for normal and anomalous heat transport in quantum harmonic chains. Hattori K; Yoshikawa M Phys Rev E; 2019 Jun; 99(6-1):062104. PubMed ID: 31330697 [TBL] [Abstract][Full Text] [Related]
22. Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. Maiti A; Svizhenko A; Anantram MP Phys Rev Lett; 2002 Mar; 88(12):126805. PubMed ID: 11909492 [TBL] [Abstract][Full Text] [Related]
23. Strain dependence of the heat transport properties of graphene nanoribbons. Yeo PS; Loh KP; Gan CK Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343 [TBL] [Abstract][Full Text] [Related]
24. Length and end group dependence of the electronic transport properties in carbon atomic molecular wires. Deng X; Zhang Z; Zhou J; Qiu M; Tang G J Chem Phys; 2010 Mar; 132(12):124107. PubMed ID: 20370114 [TBL] [Abstract][Full Text] [Related]
25. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Kim WY; Kim KS J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178 [TBL] [Abstract][Full Text] [Related]
26. Tunable heat conduction through coupled Fermi-Pasta-Ulam chains. Su R; Yuan Z; Wang J; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012136. PubMed ID: 25679599 [TBL] [Abstract][Full Text] [Related]
27. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study. Hata T; Kawai H; Ohto T; Yamashita K J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007 [TBL] [Abstract][Full Text] [Related]
28. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory. Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604 [TBL] [Abstract][Full Text] [Related]
29. Thermal conductance of the Fermi-Pasta-Ulam chains: atomic to mesoscopic transition. Nicolin L; Segal D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):040102. PubMed ID: 20481664 [TBL] [Abstract][Full Text] [Related]
30. Raman scattering from nonequilibrium molecular conduction junctions. Galperin M; Ratner MA; Nitzan A Nano Lett; 2009 Feb; 9(2):758-62. PubMed ID: 19159246 [TBL] [Abstract][Full Text] [Related]
31. Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation. Dahlen NE; van Leeuwen R J Chem Phys; 2005 Apr; 122(16):164102. PubMed ID: 15945667 [TBL] [Abstract][Full Text] [Related]
32. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Sääskilahti K; Oksanen J; Tulkki J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012128. PubMed ID: 23944435 [TBL] [Abstract][Full Text] [Related]
33. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function. Panahi SFKS; Namiranian A; Soleimani M; Jamaati M Phys Chem Chem Phys; 2018 Feb; 20(6):4160-4166. PubMed ID: 29359215 [TBL] [Abstract][Full Text] [Related]
34. Effect of the continuity of the pi conjugation on the conductance of ruthenium-octene-ruthenium molecular junctions. Ning J; Qian Z; Li R; Hou S; Rocha AR; Sanvito S J Chem Phys; 2007 May; 126(17):174706. PubMed ID: 17492878 [TBL] [Abstract][Full Text] [Related]
35. Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. Pontes RB; Rocha AR; Sanvito S; Fazzio A; da Silva AJ ACS Nano; 2011 Feb; 5(2):795-804. PubMed ID: 21226481 [TBL] [Abstract][Full Text] [Related]
37. The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction. Reimers JR; Solomon GC; Gagliardi A; Bilić A; Hush NS; Frauenheim T; Di Carlo A; Pecchia A J Phys Chem A; 2007 Jul; 111(26):5692-702. PubMed ID: 17530826 [TBL] [Abstract][Full Text] [Related]
38. Electron transport properties of atomic carbon nanowires between graphene electrodes. Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763 [TBL] [Abstract][Full Text] [Related]
39. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states. Jiang SX; Lu HH; Zhou D; Cai D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032925. PubMed ID: 25314522 [TBL] [Abstract][Full Text] [Related]
40. Semiclassical initial value approximation for Green's function. Kay KG J Chem Phys; 2010 Jun; 132(24):244110. PubMed ID: 20590184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]