These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17677274)

  • 21. Langevin equations for competitive growth models.
    Silveira FA; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011601. PubMed ID: 22400575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluctuation and relaxation properties of pulled fronts: A scenario for nonstandard kardar-parisi-zhang scaling.
    Tripathy G; van Saarloos W
    Phys Rev Lett; 2000 Oct; 85(17):3556-9. PubMed ID: 11030949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accessibility of the surface fractal dimension during film growth.
    Mozo Luis EE; Oliveira FA; de Assis TA
    Phys Rev E; 2023 Mar; 107(3-1):034802. PubMed ID: 37073068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation.
    Rodríguez-Fernández E; Santalla SN; Castro M; Cuerno R
    Phys Rev E; 2022 Aug; 106(2-1):024802. PubMed ID: 36109999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feedback control of surface roughness in a one-dimensional Kardar-Parisi-Zhang growth process.
    Priyanka ; Täuber UC; Pleimling M
    Phys Rev E; 2020 Feb; 101(2-1):022101. PubMed ID: 32168635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What is the connection between ballistic deposition and the Kardar-Parisi-Zhang equation?
    Katzav E; Schwartz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061608. PubMed ID: 15697382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kardar-Parisi-Zhang Physics and Phase Transition in a Classical Single Random Walker under Continuous Measurement.
    Jin T; Martin DG
    Phys Rev Lett; 2022 Dec; 129(26):260603. PubMed ID: 36608188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic properties in a family of competitive growing models.
    Horowitz CM; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic transition in deposition with a poisoning species.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):027101. PubMed ID: 12241317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic scaling study of vapor deposition polymerization: a Monte Carlo approach.
    Tangirala S; Landau DP; Zhao YP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011605. PubMed ID: 20365382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initial pseudo-steady state & asymptotic KPZ universality in semiconductor on polymer deposition.
    Almeida RAL; Ferreira SO; Ferraz I; Oliveira TJ
    Sci Rep; 2017 Jun; 7(1):3773. PubMed ID: 28630488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time.
    Carrasco ISS; Oliveira TJ
    Phys Rev E; 2022 May; 105(5-1):054804. PubMed ID: 35706246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scaling behavior of the surface in ballistic deposition.
    Yu J; Amar JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):060601. PubMed ID: 12188693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of (2+1) -dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers.
    Odor G; Liedke B; Heinig KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021125. PubMed ID: 19391724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stretching of a Fractal Polymer around a Disc Reveals Kardar-Parisi-Zhang Scaling.
    Polovnikov KE; Nechaev SK; Grosberg AY
    Phys Rev Lett; 2022 Aug; 129(9):097801. PubMed ID: 36083665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic scaling in a ballistic deposition model for a binary system.
    El-Nashar HF; Cerdeira HA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6149-55. PubMed ID: 11088288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transients due to instabilities hinder Kardar-Parisi-Zhang scaling: a unified derivation for surface growth by electrochemical and chemical vapor deposition.
    Cuerno R; Castro M
    Phys Rev Lett; 2001 Dec; 87(23):236103. PubMed ID: 11736462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite-size effects in roughness distribution scaling.
    Oliveira TJ; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061601. PubMed ID: 18233854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-passage percolation under extreme disorder: From bond percolation to Kardar-Parisi-Zhang universality.
    Villarrubia D; Álvarez Domenech I; Santalla SN; Rodríguez-Laguna J; Córdoba-Torres P
    Phys Rev E; 2020 Jun; 101(6-1):062124. PubMed ID: 32688550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic transition in etching with poisoning.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041602. PubMed ID: 14682948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.