These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17677319)

  • 1. Phase separation in the crust of accreting neutron stars.
    Horowitz CJ; Berry DK; Brown EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066101. PubMed ID: 17677319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity and phase separation of the crust of accreting neutron stars.
    Horowitz CJ; Caballero OL; Berry DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026103. PubMed ID: 19391802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization of classical multicomponent plasmas.
    Medin Z; Cumming A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036107. PubMed ID: 20365815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End point of the rp process on accreting neutron stars.
    Schatz H; Aprahamian A; Barnard V; Bildsten L; Cumming A; Ouellette M; Rauscher T; Thielemann FK; Wiescher M
    Phys Rev Lett; 2001 Apr; 86(16):3471-4. PubMed ID: 11328001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars.
    Horowitz CJ; Berry DK; Briggs CM; Caplan ME; Cumming A; Schneider AS
    Phys Rev Lett; 2015 Jan; 114(3):031102. PubMed ID: 25658989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron reactions in accreting neutron stars: a new pathway to efficient crust heating.
    Gupta SS; Kawano T; Möller P
    Phys Rev Lett; 2008 Dec; 101(23):231101. PubMed ID: 19113537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking strain of neutron star crust and gravitational waves.
    Horowitz CJ; Kadau K
    Phys Rev Lett; 2009 May; 102(19):191102. PubMed ID: 19518937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-of-flight mass measurements for nuclear processes in neutron star crusts.
    Estradé A; Matoš M; Schatz H; Amthor AM; Bazin D; Beard M; Becerril A; Brown EF; Cyburt R; Elliot T; Gade A; Galaviz D; George S; Gupta SS; Hix WR; Lau R; Lorusso G; Möller P; Pereira J; Portillo M; Rogers AM; Shapira D; Smith E; Stolz A; Wallace M; Wiescher M
    Phys Rev Lett; 2011 Oct; 107(17):172503. PubMed ID: 22107512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. r-Mode Runaway and Rapidly Rotating Neutron Stars.
    Andersson N; Jones DI; Kokkotas KD; Stergioulas N
    Astrophys J; 2000 May; 534(1):L75-L78. PubMed ID: 10790075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscous Boundary-Layer Damping of r-Modes in Neutron Stars.
    Bildsten L; Ushomirsky G
    Astrophys J; 2000 Jan; 529(1):L33-L36. PubMed ID: 10615030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.
    Schatz H; Gupta S; Möller P; Beard M; Brown EF; Deibel AT; Gasques LR; Hix WR; Keek L; Lau R; Steiner AW; Wiescher M
    Nature; 2014 Jan; 505(7481):62-5. PubMed ID: 24291788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamically Consistent Equation of State for an Accreted Neutron Star Crust.
    Gusakov ME; Chugunov AI
    Phys Rev Lett; 2020 May; 124(19):191101. PubMed ID: 32469588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass Measurement of 56Sc Reveals a Small A = 56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust.
    Meisel Z; George S; Ahn S; Bazin D; Brown BA; Browne J; Carpino JF; Chung H; Cole AL; Cyburt RH; Estradé A; Famiano M; Gade A; Langer C; Matoš M; Mittig W; Montes F; Morrissey DJ; Pereira J; Schatz H; Schatz J; Scott M; Shapira D; Smith K; Stevens J; Tan W; Tarasov O; Towers S; Wimmer K; Winkelbauer JR; Yurkon J; Zegers RG
    Phys Rev Lett; 2015 Oct; 115(16):162501. PubMed ID: 26550869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superfluid heat conduction and the cooling of magnetized neutron stars.
    Aguilera DN; Cirigliano V; Pons JA; Reddy S; Sharma R
    Phys Rev Lett; 2009 Mar; 102(9):091101. PubMed ID: 19392503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models.
    Watanabe G; Pethick CJ
    Phys Rev Lett; 2017 Aug; 119(6):062701. PubMed ID: 28949649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The physics of neutron stars.
    Lattimer JM; Prakash M
    Science; 2004 Apr; 304(5670):536-42. PubMed ID: 15105490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum elastic deformations of compact stars with exotic equations of state.
    Owen BJ
    Phys Rev Lett; 2005 Nov; 95(21):211101. PubMed ID: 16384127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface emission from neutron stars and implications for the physics of their interiors.
    Ozel F
    Rep Prog Phys; 2013 Jan; 76(1):016901. PubMed ID: 23234858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.
    Schneider AS; Hughto J; Horowitz CJ; Berry DK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066405. PubMed ID: 23005226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars.
    Chakrabarty D; Morgan EH; Muno MP; Galloway DK; Wijnands R; Van Der Klis M; Markwardt CB
    Nature; 2003 Jul; 424(6944):42-4. PubMed ID: 12840751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.