These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 17677646)

  • 21. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron.
    Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K
    Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons.
    Silva FW; Cruz-Silva E; Terrones M; Terrones H; Barros EB
    Nanotechnology; 2016 May; 27(18):185203. PubMed ID: 27004996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. sigma- and pi-defects at graphene nanoribbon edges: building spin filters.
    Martins TB; da Silva AJ; Miwa RH; Fazzio A
    Nano Lett; 2008 Aug; 8(8):2293-8. PubMed ID: 18646830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.
    Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF
    J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution.
    Carbonell-Sanromà E; Brandimarte P; Balog R; Corso M; Kawai S; Garcia-Lekue A; Saito S; Yamaguchi S; Meyer E; Sánchez-Portal D; Pascual JI
    Nano Lett; 2017 Jan; 17(1):50-56. PubMed ID: 28073274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boron nitride nanoribbons become metallic.
    Lopez-Bezanilla A; Huang J; Terrones H; Sumpter BG
    Nano Lett; 2011 Aug; 11(8):3267-73. PubMed ID: 21736341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain-induced spin crossover and spin-polarized currents in a prototype graphene nanoribbon.
    Castellanos Caro R; Dos Santos MC
    Phys Chem Chem Phys; 2016 Jun; 18(24):16451-6. PubMed ID: 27263801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure of BSb defective monolayers and nanoribbons.
    Ersan F; Gökoğlu G; Aktürk E
    J Phys Condens Matter; 2014 Aug; 26(32):325303. PubMed ID: 25049113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons.
    Wang ZF; Jin S; Liu F
    Phys Rev Lett; 2013 Aug; 111(9):096803. PubMed ID: 24033061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights on the atomic and electronic structure of boron nanoribbons.
    Saxena S; Tyson TA
    Phys Rev Lett; 2010 Jun; 104(24):245502. PubMed ID: 20867310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate.
    Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D
    Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.