BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17677669)

  • 21. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells.
    van Oosten ASG; Chen X; Chin L; Cruz K; Patteson AE; Pogoda K; Shenoy VB; Janmey PA
    Nature; 2019 Sep; 573(7772):96-101. PubMed ID: 31462779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of a semiflexible polymer or polymer ring in shear flow.
    Lang PS; Obermayer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022606. PubMed ID: 25353501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Passive and active microrheology for cross-linked F-actin networks in vitro.
    Lee H; Ferrer JM; Nakamura F; Lang MJ; Kamm RD
    Acta Biomater; 2010 Apr; 6(4):1207-18. PubMed ID: 19883801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro- and macrorheological properties of isotropically cross-linked actin networks.
    Luan Y; Lieleg O; Wagner B; Bausch AR
    Biophys J; 2008 Jan; 94(2):688-93. PubMed ID: 17872953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural hierarchy governs fibrin gel mechanics.
    Piechocka IK; Bacabac RG; Potters M; Mackintosh FC; Koenderink GH
    Biophys J; 2010 May; 98(10):2281-9. PubMed ID: 20483337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of prestressed semiflexible polymer chains as a model of cell rheology.
    Rosenblatt N; Alencar AM; Majumdar A; Suki B; Stamenović D
    Phys Rev Lett; 2006 Oct; 97(16):168101. PubMed ID: 17155438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastic behavior and platelet retraction in low- and high-density fibrin gels.
    Wufsus AR; Rana K; Brown A; Dorgan JR; Liberatore MW; Neeves KB
    Biophys J; 2015 Jan; 108(1):173-83. PubMed ID: 25564864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mesoscopic theory to describe the flexibility regulation in F-actin networks: An approach of phase transitions with nonlinear elasticity.
    Lopez-Menendez H
    J Mech Behav Biomed Mater; 2020 Jan; 101():103432. PubMed ID: 31542571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microrheology probes length scale dependent rheology.
    Liu J; Gardel ML; Kroy K; Frey E; Hoffman BD; Crocker JC; Bausch AR; Weitz DA
    Phys Rev Lett; 2006 Mar; 96(11):118104. PubMed ID: 16605878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the cross-effect of strains in non-linear elasticity of nearly regular polymer networks by pure shear deformation.
    Katashima T; Urayama K; Chung UI; Sakai T
    J Chem Phys; 2015 May; 142(17):174908. PubMed ID: 25956121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Normal stresses in semiflexible polymer hydrogels.
    Vahabi M; Vos BE; de Cagny HCG; Bonn D; Koenderink GH; MacKintosh FC
    Phys Rev E; 2018 Mar; 97(3-1):032418. PubMed ID: 29776166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The filamentous actin cross-linking/bundling activity of mammalian formins.
    Esue O; Harris ES; Higgs HN; Wirtz D
    J Mol Biol; 2008 Dec; 384(2):324-34. PubMed ID: 18835565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelasticity of isotropically cross-linked actin networks.
    Tharmann R; Claessens MM; Bausch AR
    Phys Rev Lett; 2007 Feb; 98(8):088103. PubMed ID: 17359131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergent properties of composite semiflexible biopolymer networks.
    Jensen MH; Morris EJ; Goldman RD; Weitz DA
    Bioarchitecture; 2014; 4(4-5):138-43. PubMed ID: 25759912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Mechanics of Athermal Branched Biopolymer Networks.
    Rens R; Vahabi M; Licup AJ; MacKintosh FC; Sharma A
    J Phys Chem B; 2016 Jul; 120(26):5831-41. PubMed ID: 26901575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of Slow Stress Relaxation in the Cytoskeleton.
    Mulla Y; MacKintosh FC; Koenderink GH
    Phys Rev Lett; 2019 May; 122(21):218102. PubMed ID: 31283330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
    Aström JA; Kumar PB; Vattulainen I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051913. PubMed ID: 18643108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels.
    Cortese JD; Frieden C
    Cell Motil Cytoskeleton; 1990; 17(3):236-49. PubMed ID: 2176572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of the nonlinear elasticity of red blood cell membranes.
    Park Y; Best CA; Kuriabova T; Henle ML; Feld MS; Levine AJ; Popescu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051925. PubMed ID: 21728589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.