These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 17677749)

  • 1. Comment on "far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons".
    Drezet A; Hohenau A; Krenn JR
    Phys Rev Lett; 2007 May; 98(20):209703; discussion 209704. PubMed ID: 17677749
    [No Abstract]   [Full Text] [Related]  

  • 2. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons.
    Smolyaninov II; Elliott J; Zayats AV; Davis CC
    Phys Rev Lett; 2005 Feb; 94(5):057401. PubMed ID: 15783692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses.
    Regan CJ; Rodriguez R; Gourshetty SC; Grave de Peralta L; Bernussi AA
    Opt Express; 2012 Sep; 20(19):20827-34. PubMed ID: 23037206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons: comment.
    Meiler T; Frank B; Giessen H
    Opt Express; 2020 Oct; 28(22):33614-33615. PubMed ID: 33115020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon mediated near-field imaging and optical addressing in nanoscience.
    Drezet A; Hohenau A; Krenn JR; Brun M; Huant S
    Micron; 2007; 38(4):427-37. PubMed ID: 16914320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution bright-field optical microscopy based on nanometer topographic contrast.
    Huang SW; Mong HY; Lee CH
    Microsc Res Tech; 2004 Nov; 65(4-5):180-5. PubMed ID: 15630691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase singularity of surface plasmon polaritons generated by optical vortices.
    Tan PS; Yuan GH; Wang Q; Zhang N; Zhang DH; Yuan XC
    Opt Lett; 2011 Aug; 36(16):3287-9. PubMed ID: 21847236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons.
    Wan X; Wang Q; Tao H
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):973-6. PubMed ID: 20448762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-emitting waveguide-plasmon polaritons.
    Rodriguez SR; Murai S; Verschuuren MA; Rivas JG
    Phys Rev Lett; 2012 Oct; 109(16):166803. PubMed ID: 23215111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation.
    Ocelic N; Hillenbrand R
    Nat Mater; 2004 Sep; 3(9):606-9. PubMed ID: 15286756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy.
    Zhu XL; Ma Y; Zhang JS; Xu J; Wu XF; Zhang Y; Han XB; Fu Q; Liao ZM; Chen L; Yu DP
    Phys Rev Lett; 2010 Sep; 105(12):127402. PubMed ID: 20867670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the leakage radiation profile mirror the intensity profile of surface plasmon polaritons?
    Wang J; Zhao C; Zhang J
    Opt Lett; 2010 Jun; 35(12):1944-6. PubMed ID: 20548347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamically generating a large-area confined optical field with subwavelength feature size.
    Zhu L; Zhang D; Wang X; Chen Y; Qiu D; Wang P; Ming H
    Appl Opt; 2014 Sep; 53(26):6091-5. PubMed ID: 25321692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon leakage radiation microscopy at the diffraction limit.
    Hohenau A; Krenn JR; Drezet A; Mollet O; Huant S; Genet C; Stein B; Ebbesen TW
    Opt Express; 2011 Dec; 19(25):25749-62. PubMed ID: 22273967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
    Xu XG; Jiang JH; Gilburd L; Rensing RG; Burch KS; Zhi C; Bando Y; Golberg D; Walker GC
    ACS Nano; 2014 Nov; 8(11):11305-12. PubMed ID: 25365544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark-field imaging by active polymer slab waveguide.
    Chen Y; Zhang D; Han L; Wang X; Zhu L; Wang P; Ming H
    Appl Opt; 2013 Nov; 52(33):8117-21. PubMed ID: 24513766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local excitation of surface plasmon polaritons using nitrogen-vacancy centers.
    Garcia-Ortiz CE; Kumar S; Bozhevolnyi SI
    Opt Lett; 2015 Aug; 40(16):3830-3. PubMed ID: 26274671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.