These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17677907)

  • 1. Geometry of Hamiltonian chaos.
    Horwitz L; Zion YB; Lewkowicz M; Schiffer M; Levitan J
    Phys Rev Lett; 2007 Jun; 98(23):234301. PubMed ID: 17677907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.
    Ben Zion Y; Horwitz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046217. PubMed ID: 20481817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the stability of Hamiltonian systems with weakly time dependent potentials.
    Levitan J; Yahalom A; Horwitz L; Lewkowicz M
    Chaos; 2013 Jun; 23(2):023122. PubMed ID: 23822487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Riemannian description of chaotic instability in Hamiltonian dynamics.
    Pettini M; Valdettaro R
    Chaos; 1995 Dec; 5(4):646-652. PubMed ID: 12780221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems.
    Ramasubramanian K; Sriram MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046207. PubMed ID: 11690125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric approach to Lyapunov analysis in Hamiltonian dynamics.
    Yamaguchi YY; Iwai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066206. PubMed ID: 11736267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting order and chaos in three-dimensional Hamiltonian systems by geometrical methods.
    Ben Zion Y; Horwitz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046220. PubMed ID: 17995095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riemannian geometric approach to chaos in SU(2) Yang-Mills theory.
    Kawabe T; Koyanagi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036222. PubMed ID: 18517500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indicator of chaos based on the Riemannian geometric approach.
    Kawabe T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):017201. PubMed ID: 15697772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
    Thiffeault JL; Boozer AH
    Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riemannian geometry of Hamiltonian chaos: hints for a general theory.
    Cerruti-Sola M; Ciraolo G; Franzosi R; Pettini M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046205. PubMed ID: 18999506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of geometrical criteria for transition to Hamiltonian chaos.
    Ben Zion Y; Horwitz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036209. PubMed ID: 18851123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between covariant and orthogonal Lyapunov vectors.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046204. PubMed ID: 21230362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent Riemannian-geometric description of Hamiltonian order and chaos with Jacobi metric.
    Di Cairano L; Gori M; Pettini M
    Chaos; 2019 Dec; 29(12):123134. PubMed ID: 31893667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geodesic Monte Carlo on Embedded Manifolds.
    Byrne S; Girolami M
    Scand Stat Theory Appl; 2013 Dec; 40(4):825-845. PubMed ID: 25309024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From the Jordan Product to Riemannian Geometries on Classical and Quantum States.
    Ciaglia FM; Jost J; Schwachhöfer L
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
    Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG
    Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetries and regular behavior of Hamiltonian systems.
    Kozlov VV
    Chaos; 1996 Mar; 6(1):1-5. PubMed ID: 12780230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.