These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17677915)

  • 1. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses.
    Wang G; Zhao DQ; Bai HY; Pan MX; Xia AL; Han BS; Xi XK; Wu Y; Wang WH
    Phys Rev Lett; 2007 Jun; 98(23):235501. PubMed ID: 17677915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture of brittle metallic glasses: brittleness or plasticity.
    Xi XK; Zhao DQ; Pan MX; Wang WH; Wu Y; Lewandowski JJ
    Phys Rev Lett; 2005 Apr; 94(12):125510. PubMed ID: 15903937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses.
    Murali P; Guo TF; Zhang YW; Narasimhan R; Li Y; Gao HJ
    Phys Rev Lett; 2011 Nov; 107(21):215501. PubMed ID: 22181893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness of metallic glasses: annealing-induced embrittlement.
    Rycroft CH; Bouchbinder E
    Phys Rev Lett; 2012 Nov; 109(19):194301. PubMed ID: 23215386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and modeling of breaking-induced spontaneous nanoscale periodic stripes in metallic glasses.
    Xia XX; Wang WH
    Small; 2012 Apr; 8(8):1197-203, 1125. PubMed ID: 22334575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the toughness in metallic glasses depends on topological and chemical heterogeneity.
    An Q; Samwer K; Demetriou MD; Floyd MC; Duggins DO; Johnson WL; Goddard WA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7053-8. PubMed ID: 27307438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavitation-Induced Fracture Causes Nanocorrugations in Brittle Metallic Glasses.
    Singh I; Narasimhan R; Ramamurty U
    Phys Rev Lett; 2016 Jul; 117(4):044302. PubMed ID: 27494475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transitions from oscillatory to smooth fracture propagation in brittle metallic glasses.
    Braiman Y; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):065101. PubMed ID: 18643323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic stability of crack fronts: out-of-plane corrugations.
    Adda-Bedia M; Arias RE; Bouchbinder E; Katzav E
    Phys Rev Lett; 2013 Jan; 110(1):014302. PubMed ID: 23383795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of cavitation governing fracture in glasses.
    Shen LQ; Yu JH; Tang XC; Sun BA; Liu YH; Bai HY; Wang WH
    Sci Adv; 2021 Mar; 7(14):. PubMed ID: 33789905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A damage-tolerant glass.
    Demetriou MD; Launey ME; Garrett G; Schramm JP; Hofmann DC; Johnson WL; Ritchie RO
    Nat Mater; 2011 Feb; 10(2):123-8. PubMed ID: 21217693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture of silicate glasses: ductile or brittle?
    Guin JP; Wiederhorn SM
    Phys Rev Lett; 2004 May; 92(21):215502. PubMed ID: 15245288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical fracture instabilities due to local hyperelasticity at crack tips.
    Buehler MJ; Gao H
    Nature; 2006 Jan; 439(7074):307-10. PubMed ID: 16421566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical glass transition revealed by the fracture toughness of metallic glasses.
    Ketkaew J; Chen W; Wang H; Datye A; Fan M; Pereira G; Schwarz UD; Liu Z; Yamada R; Dmowski W; Shattuck MD; O'Hern CS; Egami T; Bouchbinder E; Schroers J
    Nat Commun; 2018 Aug; 9(1):3271. PubMed ID: 30115910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brittle-ductile transitions in a metallic glass.
    Langer JS
    Phys Rev E; 2020 Jun; 101(6-1):063004. PubMed ID: 32688555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Griffith Criterion for Nanoscale Stress Singularity in Brittle Silicon.
    Sumigawa T; Shimada T; Tanaka S; Unno H; Ozaki N; Ashida S; Kitamura T
    ACS Nano; 2017 Jun; 11(6):6271-6276. PubMed ID: 28549214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Crystallization for Embrittlement in Metallic Glasses.
    Ketkaew J; Liu Z; Chen W; Schroers J
    Phys Rev Lett; 2015 Dec; 115(26):265502. PubMed ID: 26765004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making metallic glasses plastic by control of residual stress.
    Zhang Y; Wang WH; Greer AL
    Nat Mater; 2006 Nov; 5(11):857-60. PubMed ID: 17041581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.