These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17678038)

  • 1. Compositionally modulated ripples induced by sputtering of alloy surfaces.
    Shenoy VB; Chan WL; Chason E
    Phys Rev Lett; 2007 Jun; 98(25):256101. PubMed ID: 17678038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of nanoscale ripple relaxation on alloy surfaces.
    Ramasubramaniam A; Shenoy VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021601. PubMed ID: 18352033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially varying chemical phase formation on silicon nano ripple by low energy mixed ions bombardment.
    Mukherjee J; Bhowmik D; Bhattacharyya G; Satpati B; Karmakar P
    J Phys Condens Matter; 2022 Jan; 34(13):. PubMed ID: 34996060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.
    Muñoz-García J; Castro M; Cuerno R
    Phys Rev Lett; 2006 Mar; 96(8):086101. PubMed ID: 16606197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AES studies on the Ti/N compositionally gradient film deposited onto Ti-6Al-4V alloy by reactive DC sputtering.
    Sonoda T; Watazu A; Katou K; Asahina T
    Microsc Microanal; 2006 Aug; 12(4):356-61. PubMed ID: 16842653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular dynamics simulation of ion-induced ripple growth.
    Süle P; Heinig KH
    J Chem Phys; 2009 Nov; 131(20):204704. PubMed ID: 19947701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques.
    Carbone D; Biermanns A; Ziberi B; Frost F; Plantevin O; Pietsch U; Metzger TH
    J Phys Condens Matter; 2009 Jun; 21(22):224007. PubMed ID: 21715746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time observation of FIB-created dots and ripples on GaAs.
    Rose F; Fujita H; Kawakatsu H
    Nanotechnology; 2008 Jan; 19(3):035301. PubMed ID: 21817564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale pattern formation on solid surfaces bombarded by two broad ion beams in the regime in which sputtering is negligible.
    Bradley RM; Sharath T
    Phys Rev E; 2021 Feb; 103(2-1):022804. PubMed ID: 33735985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of the nanoscale surface ripples produced by ion irradiation of a miscut (001) gallium arsenide surface.
    Sharath T; Bradley RM
    Phys Rev E; 2022 Feb; 105(2-1):024801. PubMed ID: 35291122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and Growth Mechanism of Pt/Cu Alloy Nanoparticles by Sputter Deposition onto a Liquid Polymer.
    Deng L; Nguyen MT; Mei S; Tokunaga T; Kudo M; Matsumura S; Yonezawa T
    Langmuir; 2019 Jun; 35(25):8418-8427. PubMed ID: 31194557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2013 Jun; 52(16):3719-25. PubMed ID: 23736325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion beam-generated surface ripples: new insight in the underlying mechanism.
    Kumar T; Kumar A; Agarwal DC; Lalla NP; Kanjilal D
    Nanoscale Res Lett; 2013 Jul; 8(1):336. PubMed ID: 23890205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.
    Pahlovy SA; Yanagimoto K; Miyamoto I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1068-73. PubMed ID: 21456140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ripple formation on silicon by medium energy ion bombardment.
    Chini TK; Datta DP; Bhattacharyya SR
    J Phys Condens Matter; 2009 Jun; 21(22):224004. PubMed ID: 21715743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of local densification on microscopic morphology evolution during ion-beam sputtering of fused-silica surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Appl Opt; 2014 Apr; 53(11):2487-93. PubMed ID: 24787422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale pattern formation produced by ion bombardment of a rotating target: The decisive role of the ion energy.
    Bradley RM; Pearson DA
    Phys Rev E; 2023 Jan; 107(1-1):014801. PubMed ID: 36797904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.