These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17678224)

  • 1. Very large spontaneous-emission Beta factors in photonic-crystal waveguides.
    Lecamp G; Lalanne P; Hugonin JP
    Phys Rev Lett; 2007 Jul; 99(2):023902. PubMed ID: 17678224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.
    Ferrier L; Romeo PR; Letartre X; Drouard E; Viktorovitch P
    Opt Express; 2010 Jul; 18(15):16162-74. PubMed ID: 20721002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling into slow-mode photonic crystal waveguides.
    Hugonin JP; Lalanne P; White TP; Krauss TF
    Opt Lett; 2007 Sep; 32(18):2638-40. PubMed ID: 17873919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides.
    McMillan JF; Yang X; Panoiu NC; Osgood RM; Wong CW
    Opt Lett; 2006 May; 31(9):1235-7. PubMed ID: 16642070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of spontaneous emission from the resonant modes of a photonic crystal slab single-defect cavity.
    Ryu HY; Notomi M
    Opt Lett; 2003 Dec; 28(23):2390-2. PubMed ID: 14680192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes.
    Fu J; Tandaechanurat A; Iwamoto S; Arakawa Y
    Opt Express; 2013 May; 21(10):12443-50. PubMed ID: 23736463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.
    Matsuda N; Takesue H; Shimizu K; Tokura Y; Kuramochi E; Notomi M
    Opt Express; 2013 Apr; 21(7):8596-604. PubMed ID: 23571949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices.
    Nedel P; Letartre X; Seassal C; Auffèves A; Ferrier L; Drouard E; Rahmani A; Viktorovitch P
    Opt Express; 2011 Mar; 19(6):5014-25. PubMed ID: 21445137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of the light line in planar photonic crystal waveguides with weak vertical confinement.
    Kaspar P; Kappeler R; Erni D; Jäckel H
    Opt Express; 2011 Nov; 19(24):24344-53. PubMed ID: 22109461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide.
    Lund-Hansen T; Stobbe S; Julsgaard B; Thyrrestrup H; Sünner T; Kamp M; Forchel A; Lodahl P
    Phys Rev Lett; 2008 Sep; 101(11):113903. PubMed ID: 18851282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths.
    Hoang TB; Beetz J; Lermer M; Midolo L; Kamp M; Höfling S; Fiore A
    Opt Express; 2012 Sep; 20(19):21758-65. PubMed ID: 23037295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental observation of strong photon localization in disordered photonic crystal waveguides.
    Topolancik J; Ilic B; Vollmer F
    Phys Rev Lett; 2007 Dec; 99(25):253901. PubMed ID: 18233520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-mode-area hybrid photonic crystal fiber amplifier at 1178  nm.
    Petersen SR; Chen M; Shirakawa A; Olausson CB; Alkeskjold TT; Lægsgaard J
    Opt Lett; 2015 Apr; 40(8):1741-4. PubMed ID: 25872062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires.
    Bleuse J; Claudon J; Creasey M; Malik NS; Gérard JM; Maksymov I; Hugonin JP; Lalanne P
    Phys Rev Lett; 2011 Mar; 106(10):103601. PubMed ID: 21469790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide spectral range confocal microscope based on endlessly single-mode fiber.
    Hubbard R; Ovchinnikov YB; Hayes J; Richardson DJ; Fu YJ; Lin SD; See P; Sinclair AG
    Opt Express; 2010 Aug; 18(18):18811-9. PubMed ID: 20940774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled dipole method for radiation dynamics in finite photonic crystal structures.
    Bordas F; Louvion N; Callard S; Chaumet PC; Rahmani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056601. PubMed ID: 16803051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bloch modes at the surface of a photonic crystal interacting with a waveguide.
    Munguía-Arvayo R; García-Llamas R; Gaspar-Armenta J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1588-94. PubMed ID: 25121447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and computational concepts for periodic optical waveguides.
    Lecamp G; Hugonin JP; Lalanne P
    Opt Express; 2007 Sep; 15(18):11042-60. PubMed ID: 19547461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient "on chip" single photon gun.
    Rao VS; Hughes S
    Phys Rev Lett; 2007 Nov; 99(19):193901. PubMed ID: 18233077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.