These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 17678312)
1. Coherent control of interacting electrons in quantum dots via navigation in the energy spectrum. Murgida GE; Wisniacki DA; Tamborenea PI Phys Rev Lett; 2007 Jul; 99(3):036806. PubMed ID: 17678312 [TBL] [Abstract][Full Text] [Related]
2. Observation of coherent oscillation in single-passage Landau-Zener transitions. Sun G; Wen X; Gong M; Zhang DW; Yu Y; Zhu SL; Chen J; Wu P; Han S Sci Rep; 2015 Feb; 5():8463. PubMed ID: 25684697 [TBL] [Abstract][Full Text] [Related]
4. Adiabatic passage in a three-state system with non-Markovian relaxation: the role of excited-state absorption and two-exciton processes. Fainberg BD; Gorbunov VA J Phys Chem A; 2007 Sep; 111(38):9560-9. PubMed ID: 17803286 [TBL] [Abstract][Full Text] [Related]
5. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot. Coden DS; Romero RH; Räsänen E J Phys Condens Matter; 2015 Mar; 27(11):115303. PubMed ID: 25738833 [TBL] [Abstract][Full Text] [Related]
6. Landau-Zener-Stückelberg interference in coherent charge oscillations of a one-electron double quantum dot. Ota T; Hitachi K; Muraki K Sci Rep; 2018 Apr; 8(1):5491. PubMed ID: 29615670 [TBL] [Abstract][Full Text] [Related]
7. Coherent transient transport of interacting electrons through a quantum waveguide switch. Abdullah NR; Tang CS; Manolescu A; Gudmundsson V J Phys Condens Matter; 2015 Jan; 27(1):015301. PubMed ID: 25425564 [TBL] [Abstract][Full Text] [Related]
8. Nuclear state preparation via Landau-Zener-Stückelberg transitions in double quantum dots. Ribeiro H; Burkard G Phys Rev Lett; 2009 May; 102(21):216802. PubMed ID: 19519124 [TBL] [Abstract][Full Text] [Related]
9. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit. Mendoza M; Ujevic S J Phys Condens Matter; 2012 Jun; 24(23):235302. PubMed ID: 22568973 [TBL] [Abstract][Full Text] [Related]
10. Temperature can enhance coherent oscillations at a Landau-Zener transition. Whitney RS; Clusel M; Ziman T Phys Rev Lett; 2011 Nov; 107(21):210402. PubMed ID: 22181860 [TBL] [Abstract][Full Text] [Related]
11. Coherent quasiclassical dynamics of a persistent current qubit. Berns DM; Oliver WD; Valenzuela SO; Shytov AV; Berggren KK; Levitov LS; Orlando TP Phys Rev Lett; 2006 Oct; 97(15):150502. PubMed ID: 17155307 [TBL] [Abstract][Full Text] [Related]
12. Majorana's approach to nonadiabatic transitions validates the adiabatic-impulse approximation. Kofman PO; Ivakhnenko OV; Shevchenko SN; Nori F Sci Rep; 2023 Mar; 13(1):5053. PubMed ID: 36977739 [TBL] [Abstract][Full Text] [Related]
13. Dirac electrons in graphene-based quantum wires and quantum dots. Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777 [TBL] [Abstract][Full Text] [Related]
14. Optically induced multispin entanglement in a semiconductor quantum well. Bao J; Bragas AV; Furdyna JK; Merlin R Nat Mater; 2003 Mar; 2(3):175-9. PubMed ID: 12612675 [TBL] [Abstract][Full Text] [Related]
15. Energy Selection in Nonadiabatic Transitions. Granucci G; Melani G; Persico M; Van Leuven P J Phys Chem A; 2018 Jan; 122(2):678-689. PubMed ID: 29251501 [TBL] [Abstract][Full Text] [Related]
16. Planar Dirac electrons in magnetic quantum dots. Yang N; Zhu JL J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306 [TBL] [Abstract][Full Text] [Related]
17. Control of diabatic versus adiabatic field dissociation in a heavy Rydberg system. Shiell RC; Reinhold E; Magnus F; Ubachs W Phys Rev Lett; 2005 Nov; 95(21):213002. PubMed ID: 16384137 [TBL] [Abstract][Full Text] [Related]
18. Communication: multistate quantum dynamics of photodissociation of carbon dioxide between 120 nm and 160 nm. Grebenshchikov SY J Chem Phys; 2012 Jul; 137(2):021101. PubMed ID: 22803520 [TBL] [Abstract][Full Text] [Related]
19. Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. Dupont-Ferrier E; Roche B; Voisin B; Jehl X; Wacquez R; Vinet M; Sanquer M; De Franceschi S Phys Rev Lett; 2013 Mar; 110(13):136802. PubMed ID: 23581354 [TBL] [Abstract][Full Text] [Related]
20. Spectral properties of rotating electrons in quantum dots and their relation to quantum Hall liquids. Koskinen M; Reimann SM; Nikkarila JP; Manninen M J Phys Condens Matter; 2007 Feb; 19(7):076211. PubMed ID: 22251598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]