These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17678403)

  • 1. Anharmonic phonon lifetimes in carbon nanotubes: evidence for a one-dimensional phonon decay bottleneck.
    Rao R; Menendez J; Poweleit CD; Rao AM
    Phys Rev Lett; 2007 Jul; 99(4):047403. PubMed ID: 17678403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopy of strained single-walled carbon nanotubes.
    Liu Z; Zhang J; Gao B
    Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes.
    Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF
    Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical phonon lifetimes in single-walled carbon nanotubes by time-resolved Raman scattering.
    Kang K; Ozel T; Cahill DG; Shimt M
    Nano Lett; 2008 Dec; 8(12):4642-7. PubMed ID: 19367808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective coherent phonon-mode generation in single-wall carbon nanotubes.
    Nugraha AR; Hasdeo EH; Saito R
    J Phys Condens Matter; 2017 Feb; 29(5):055302. PubMed ID: 27941224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of exciton-phonon coupling elements in single-walled carbon nanotubes by Raman overtone analysis.
    Shreve AP; Haroz EH; Bachilo SM; Weisman RB; Tretiak S; Kilina S; Doorn SK
    Phys Rev Lett; 2007 Jan; 98(3):037405. PubMed ID: 17358727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Softening of the radial breathing mode in metallic carbon nanotubes.
    Farhat H; Sasaki K; Kalbac M; Hofmann M; Saito R; Dresselhaus MS; Kong J
    Phys Rev Lett; 2009 Mar; 102(12):126804. PubMed ID: 19392307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes.
    Hagen A; Steiner M; Raschke MB; Lienau C; Hertel T; Qian H; Meixner AJ; Hartschuh A
    Phys Rev Lett; 2005 Nov; 95(19):197401. PubMed ID: 16384021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes.
    Perebeinos V; Avouris P
    Phys Rev Lett; 2008 Aug; 101(5):057401. PubMed ID: 18764429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of the population lifetime of D band and G' band phonons in single-walled carbon nanotubes.
    Nesbitt JM; Smith DC
    Nano Lett; 2013 Feb; 13(2):416-22. PubMed ID: 23297761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes.
    López-Lorente AI; Simonet BM; Valcárcel M; Mizaikoff B
    Anal Chim Acta; 2013 Jul; 788():122-8. PubMed ID: 23845490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes.
    Oron-Carl M; Krupke R
    Phys Rev Lett; 2008 Mar; 100(12):127401. PubMed ID: 18517908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longer InN phonon lifetimes in nanowires.
    Domènech-Amador N; Cuscó R; Artús L; Stoica T; Calarco R
    Nanotechnology; 2012 Feb; 23(8):085702. PubMed ID: 22293460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of acetylene.
    Ramesh P; Kishi N; Sugai T; Shinohara H
    J Phys Chem B; 2006 Jan; 110(1):130-5. PubMed ID: 16471510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes.
    Graham MW; Calhoun TR; Green AA; Hersam MC; Fleming GR
    Nano Lett; 2012 Feb; 12(2):813-9. PubMed ID: 22214398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical properties of assembled single-walled carbon nanotube gels.
    Ostojic GN
    Chemphyschem; 2012 Jun; 13(8):2102-7. PubMed ID: 22461220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.