BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17679324)

  • 1. Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force.
    McAleavey SA; Menon M; Orszulak J
    Ultrason Imaging; 2007 Apr; 29(2):87-104. PubMed ID: 17679324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying hepatic shear modulus in vivo using acoustic radiation force.
    Palmeri ML; Wang MH; Dahl JJ; Frinkley KD; Nightingale KR
    Ultrasound Med Biol; 2008 Apr; 34(4):546-58. PubMed ID: 18222031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus.
    Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear modulus imaging with spatially-modulated ultrasound radiation force.
    McAleavey S; Menon M; Elegbe E
    Ultrason Imaging; 2009 Oct; 31(4):217-34. PubMed ID: 20458875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms.
    Amador C; Urban MW; Chen S; Chen Q; An KN; Greenleaf JF
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1706-14. PubMed ID: 21317078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results.
    Nightingale K; McAleavey S; Trahey G
    Ultrasound Med Biol; 2003 Dec; 29(12):1715-23. PubMed ID: 14698339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force.
    Gennisson JL; Rénier M; Catheline S; Barrière C; Bercoff J; Tanter M; Fink M
    J Acoust Soc Am; 2007 Dec; 122(6):3211-9. PubMed ID: 18247733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of SMURF estimation of shear modulus in hydrogels.
    McAleavey S; Collins E; Kelly J; Elegbe E; Menon M
    Ultrason Imaging; 2009 Apr; 31(2):131-50. PubMed ID: 19630254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation.
    Palmeri ML; McAleavey SA; Fong KL; Trahey GE; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2065-79. PubMed ID: 17091842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite-element method model of soft tissue response to impulsive acoustic radiation force.
    Palmeri ML; Sharma AC; Bouchard RR; Nightingale RW; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1699-712. PubMed ID: 16382621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized harmonic motion imaging: theory, simulations and experiments.
    Konofagou EE; Hynynen K
    Ultrasound Med Biol; 2003 Oct; 29(10):1405-13. PubMed ID: 14597337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation.
    Urban MW; Nenadic IZ; Qiang B; Bernal M; Chen S; Greenleaf JF
    J Acoust Soc Am; 2015 Oct; 138(4):2499-507. PubMed ID: 26520332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitored steady-state excitation and recovery (MSSER) radiation force imaging using viscoelastic models.
    Mauldin FW; Haider MA; Loboa EG; Behler RH; Euliss LE; Pfeiler TW; Gallippi CM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1597-610. PubMed ID: 18986950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two methods for the generation of spatially modulated ultrasound radiation force.
    Elegbe EC; Menon MG; McAleavey SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1344-54. PubMed ID: 21768019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.